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The dynamics of a heteropolymer chain in solution is studied in the limit of long chain length. Using a
functional integral representation, we derive an effective equation of motion, in which the heterogeneity of the
chain manifests itself as a time-dependent excluded-volume effect. At the mean-field level, the heteropolymer
chain is therefore dynamically equivalent to a homopolymer chain with both time-independent and time-
dependent excluded volume effects. The perturbed relaxation spectrum is also calculated. We find that hetero-
geneity also renormalizes the relaxation spectrum. However, we find, to the lowest order in heterogeneity, that
the relaxation spectrum does not exhibit any dynamic freezing at the point when static~equilibrium! ‘‘freez-
ing’’ transition occurs in heteropolymer. Namely, the breaking of fluctuation-dissipation theorem proposed for
spin-glass dynamics does not have a dynamic effect on the heteropolymer as far as the relaxation spectrum is
concerned. The implication of this result is discussed.@S1063-651X~96!03711-7#

PACS number~s!: 47.10.1g

I. INTRODUCTION

Although systems without quenched randomness usually
provide useful information and serve as the first step in our
understanding of condensed phases, there are situations in
which quenched randomness creates entirely new phenom-
ena. Flux line pinning in type-II superconductors, critical to
the practical application of superconductors in high field
magnets, is a manifestation of the embedded quenched im-
purities @1#. In the mixture of 3He and 4He, quenched ran-
domness introduced by porous media~e.g., aerogels! shifts
the tricritical point and extends the range of superfluid phase
@2#. The interesting properties~e.g., the onset of remanence
effects below a freezing temperature! of dilute magnets,
modeled by ‘‘spin glasses’’@3#, are consequences of the
magnetic impurities. These are just a few examples of the
new phenomena created by quenched randomness. The study
of these phenomena constitutes an important part of modern
condensed phase physics.

Theoretical progress in the study of these systems, espe-
cially spin-glass systems, also has given impetus to other,
somewhat distant fields. For example, it is shown that there
is an interesting analogy between some models developed
for spin glasses and the statistical properties of polymers
with quenched randomness~realized as heterogeneity of the
polymer! @4#. This analogy has attracted much attention in
recent years due to its possible biophysical applications. As
much work has focused on the static~thermodynamic! con-
sequences of this analogy, we shall discuss in this paper its
dynamic consequence.

One of the general methods used to study systems with
quenched randomness is the so-called replica method@3,5#.
Because the randomness is quenched, thermal equilibrium is
established without thermally equilibrating with the random-
ness. Therefore, to calculate the thermodynamic quantities
for a system with quenched randomness one has to calculate
the average of the free energy over the distribution of the
randomness

^2kBT lnZ&. ~1.1!

The mathematical obstacle lies in the difficulty in calculating
the average of a logarithmic function depending on the ran-
domness, such as Eq.~1.1!. The replica method circumvents
this obstacle by using the identity

lnZ5 lim
n→0

Zn21

n
. ~1.2!

This method has been very useful and successful, though not
free from controversy. With its success and popularity in
spin glasses, it is not surprising that the study of heteropoly-
mers along the line of the above-mentioned analogy often, if
not exclusively, uses this method to draw thermodynamic
conclusions.

Besides the replica method, there exist other useful theo-
retical methods for the study of systems with quenched dis-
order @3#. Since we are interested in the dynamics of het-
eropolymers, among these methods the Langevin dynamic
method@3,6# is the most relevant one. This method does not
use the unphysical replica limitn→0 @cf. Eq. ~1.2!# to cal-
culate thermodynamic quantities. In Ref.@6# it is shown that
the functional integral formalism developed by Martin, Sig-
gia, and Rose for classical statistical dynamics@7# allows an
average over the quenched randomness without using the
replica method. It is also shown that this formalism is ca-
pable of giving dynamic information as well as statics.
Therefore, although it generally involves more complicated
techniques, it is worthwhile to study systems with quenched
randomness using this method. In spin glasses there have
been some studies using this approach@3,8,9#. On the side of
heteropolymers, however, to the best of our knowledge, a
dynamic study similar to these studies is still lacking. While
the static analogy between spin glasses and heteropolymers
has been very useful, a similar dynamic study is necessary if
one wants to use this analogy to address dynamic issues.
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The purpose of this paper is to study the dynamics of a
single heteropolymer chain, i.e., a dilute heteropolymer so-
lution. It is well known that the dynamic study of polymer
solutions, especially dilute solutions, must take into account
the hydrodynamic effect in order to make the prediction ex-
perimentally relevant@10–12#. Besides the hydrodynamic ef-
fect, the heterogeneity of the polymer chain presumably in-
troduces a further effect. One expects that the dynamics of
the heteropolymer chain will depend on these two effects as
well as the usual excluded-volume effect. Here we investi-
gate the importance of the heterogeneity to the chain dynam-
ics.

The dynamics of dilute polymer solution has been exten-
sively studied@10,12#. Dynamic quantities such as the diffu-
sion constant@13#, time correlation functions@14#, intrinsic
viscosity @15#, initial decay rate of the dynamical scattering
@16#, and relaxation spectrum@17# have been calculated.
Among these dynamic quantities we are most interested in
the relaxation spectrum because, in the context of Ref.@4#,
i.e. protein dynamics, the relaxation spectrum is the most
relevant quantity with potential application to the protein
folding problem. In spite of the close analogy between mod-
els of spin glasses and heteropolymers at the static level@4#,
we find that this analogy is not as complete at the dynamic
level. While there have been attempts to study heteropolymer
dynamics at the phenomenological level of the hypothetical
dynamics of the random energy model@18#, the present mi-
croscopic analysis suggests that such an analogy may not be
justified when dynamic issues are tackled.

The structure of this paper is as follows. In Sec. II we
define the model Hamiltonian and the dynamic equation of
the system. We discuss the physics of the model Hamiltonian
and the dynamic equation. Assumptions made are also ad-
dressed. In Sec. III we derive the mean-field equation of
motion for the chain in the limit of long chain length. This
effective equation of motion can be further simplified when
the characteristic time scale of the solvent is much shorter
than the characteristic time scale of the chain. An effective
Hamiltonian results from this effective equation. It is shown
that the effective Hamiltonian contains a memory term and
hence a time-dependent excluded-volume interaction. In Sec.
IV A we calculate the perturbed relaxation spectrum for the
chain, to the lowest order in excluded volume interaction,
hydrodynamic interaction, and heterogeneity. We find that,
as long as the model Hamiltonian and dynamic equation are
valid, the relaxation spectrum does not depend on the final
equilibrium state of the chain. In other words, in spite of the
static analogy between spin glasses and heteropolymers men-
tioned above, the possible breaking of the fluctuation-
dissipation theorem, due to the degeneracy of the ground
states, found in the mean-field dynamics of spin glass@3,8#
does not have a corresponding dynamical effect, at least to
the order of our calculation, in the mean-field dynamics of
heteropolymer. In Sec. V we discuss the analogy of spin
glasses and heteropolymers, using the well-known corre-
spondence between magnetic systems and self-avoiding ran-
dom walks. We will see that, when the kinetic equations are
compared, it is clear that the analogy is not very helpful
because the dynamic variables used are completely different
and may not be relevant to each other. In Sec. VI the physi-
cal situations to which our model may be applicable are dis-

cussed. We also give a brief discussion of approximations
involved and the limitation of the results. In Appendix A we
provide an alternative derivation of the conventional~Kirk-
wood! approach used in the dynamic study of dilute polymer
solution. Appendix B gives the detailed derivation of the
mean-field approximation sketched in Sec. III. In Appendix
C we detail the calculation leading to the result in Sec. IV A.

II. MODEL

A. Hamiltonian

Consider a heteropolymer chain with conformation speci-
fied by the coordinates ofN monomersr0 , . . . ,rN21. The
chain can be described by the Hamiltonian

H5H01HR , ~2.1a!

H0[ (
i50

N21
1

2
~r i112r i !

2, ~2.1b!

HR[
1

2(iÞ j
Bi jU~r i2r j !, ~2.1c!

whereBi j is a Gaussian random number centered atB0 with
varianceB2 (B.0),

P~Bi j !5
1

A2pB2
expF2

~Bi j2B0!
2

2B2 G . ~2.2!

In Eqs. ~2.1! H0 is the Hamiltonian used in the bead-
spring chain model~Rouse model! @11#, where, for conve-
nience, all the spring constants have been taken to be unity
~see below!. The chain connectivity of the polymer is de-
scribed by this term.HR simulates the excluded-volume ef-
fect. The excluded volume interactionU(r i2r j ) between
monomeri and monomerj is Gaussian modulated byBi j .
This modulation confers the chain heterogeneity. When
B→0 the excluded-volume interactions are ‘‘monochromati-
cally’’ modulated byB0 and the chain becomes homoge-
neous. At this extreme, the Hamiltonian Eq.~2.1! reduces to
the usual Edwards Hamiltonian@12#

HE[ (
i50

N21
1

2
~r i112r i !

21
B0

2 (
iÞ j

U~r i2r j !. ~2.3!

On the other hand, a nonvanishingB means that there exist
various monomer-monomer interactions and the chain is es-
sentially heterogeneous. ThusB is a measure of chain het-
erogeneity and will be called theheterogeneity parameter.
B0 is the usual excluded volume parameter measuring the
strength of excluded volume effect. Presumably,B depends
only on the heterogeneity~dispersity! of polymer, whileB0
is generally a function of temperature and solvent quality.

The excluded-volume parameterB0 will be taken to be
positive throughout this paper. A negativeB0 gives attractive
monomer-monomer interactions, which requires inclusion of
repulsive three-body interactions in order to render the
theory stable@19,20#. To simplify the matter, we will confine
ourselves to positiveB0, i.e., a heteropolymer chain in a
good solvent.
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The conventional use of the excluded volume interaction
U(r ) is the hard-core repulsiond(r ) @12,19,20#. To derive
the effective equation of motion at the mean-field level in a
more general form, we will not adopt this convention for
U(r ) until Sec. IV A, where the perturbed relaxation spec-
trum is calculated. Before Sec. IV A the only assumption on
U(r ) will be translational invarianceU(r ,r 8)5U(r2r 8)
5U(r 82r ).

Obviously, the HamiltonianH0 ignores the possible varia-
tion of spring constants. Presumably, this variation exists
when the chain is heterogeneous. Since our concern here is
the effect of random excluded volume interactions, we do
not consider this variation in spring constants. With this sim-
plification, by a properly chosen length scale, we can always
set all spring constants to be unity, as done in~2.1b!.

The statics of the Hamiltonian~2.1! has been studied in
Ref. @4#, within the context of biopolymer and protein fold-
ing. These works share a number of techniques with spin-
glass models. In the past two decades there has been much
progress in the theories of spin glasses in both statics and
dynamics@3#. However, there has never been any systematic
microscopic study on the dynamics of the Hamiltonian~2.1!.

B. Dynamics

Starting with the Hamiltonian~2.1!, for the dynamic
study, we consider the coupled Langevin equations proposed
by Oono and Freed@21#:

]

]t
r i~ t !52

1

z0

]H

]r i~ t !
1g0u„r i~ t !,t…1u0i~ t !, ~2.4a!

^u0i~ t !&50, ^u0i~ t !u0 j~ t8!&5
2

z0
d~ t2t8!d i j1,

~2.4b!

]

]t
u~r ,t !5n0Du~r ,t !2

g0
r0

(
i50

N21
]H

]r i~ t !
d„r2r i~ t !…2

1

r0
¹p

1j0~r ,t !, ~2.4c!

^j0~r ,t !&50,
~2.4d!

^j0~r ,t !j0~r 8,t8!&52
2h0

r0
2 Dd~r2r 8!d~ t2t8!1,

where1 is a unit tensor. In these equations the kinetic coef-
ficient z0

21 and kinematic viscosityn0 set the time scales for
polymer and solvent molecules, respectively.g0 is a measure
of the coupling strength between monomers and solvent mol-
ecules.~We also ignore the possible variation of these cou-
plings due to the chain heterogeneity.! The Langevin noise
u0i(t) gives monomeri a random velocity at timet. The
noisej0(r ,t) is the random acceleration of the solvent veloc-
ity field at positionr and timet. The dynamic viscosityh0
is, as usual, related to the solvent densityr0 by h05r0n0.
The hydrostatic pressurep ensures the incompressibility of
the solvent@22#. This condition enables us to consider only
the transverse component of solvent velocity field. Since no
confusion will be caused, hereafter we will denote the trans-
verse component of solvent velocity by the same symbolu.

Equation~2.4a! is a relaxation dynamic equation, with the
mode-coupling termg0u, for the chain. Equation~2.4c! is the
linearized ~Stokes! approximation of the Navier-Stokes
equation for the solvent velocity fieldu, augmented by the
forces exerted by monomers@22#. We will assume that the
spatial extension of the system is infinite so that we can
ignore the boundary condition. The problem related to the
nonapplicability of the Navier-Stokes equation in an un-
bounded space will also be ignored@23,24#. Equations~2.4!
are valid as long as the Reynolds number is small.

In the conventional theory of Brownian motion the effect
of surrounding solvent molecules is taken into account by the
Langevin noises. In polymer dynamics the commonly used
approach~Kirkwood’s approach! is essentially based on this
viewpoint @10–12#. This approach treats each monomer as a
point source of frictional force and amasses the effects of
solvent molecules in the Langevin noises. However, as ar-
gued by Oono@12,25#, this picture is not self-consistent be-
cause the monomers are not legitimate Brownian particles,
even if the polymer as a whole can be treated like a Brown-
ian object. In contrast to Kirkwood’s approach, the coupled
Langevin equations~2.4! proposed by Oono and Freed ex-
plicitly introduces the solvent velocity field and associated
fluctuations. In this approach the Langevin noisesu0 and
j0 have to be reinterpreted as coming from the coarse-
graining procedures used to derive these equations separately
from the more fundamental microscopic equations, and the
coupling between the polymer and solvent is introduced only
after the respective coarse-graining procedures have been
performed. A proper term for these equations is ‘‘kinetic
equations’’ @26#. Therefore, we will simply call Eqs.~2.4!
Oono-Freed kinetic equations.

In the Oono-Freed kinetic equations the energy scale has
been chosen askBT51. The correlation of Langevin noises
chosen here@Eqs.~2.4b! and~2.4d!# guarantees that the sys-
tem will eventually approach the equilibrium state deter-
mined by the statics of the Hamiltonian~2.1!.

Note that the second term on the right-hand side of Eq.
~2.4c! is the frictional forces exerted by the monomers,
which are point sources of frictional force, as in Kirkwood’s
approach. In fact, there is a close relationship between these
two approaches. It has been shown that, to the lowest non-
trivial order ~i.e., to the lowest order in the excluded-volume
parameterB0 and the hydrodynamic coupling parameter
g0) and within Markovian approximation for solvent veloc-
ity field, when the solvent velocity field is projected out, the
Fokker-Planck equation for the kinetic equation@Eqs.~2.4!#
reduces to the conventional Kirkwood diffusion equation
@12,16#. A simplified proof of this reduction is given in Ap-
pendix A. These equations are, in this sense, more funda-
mental than the commonly used Kirkwood diffusion equa-
tion, upon which most dynamic studies of dilute polymer
solution are developed. Therefore, a full dynamic study
should start from Eqs.~2.4!.

In the same spirit as of the proof in Appendix A, we first
project out the velocity field from the kinetic equation. This
is done by formally solving Eq.~2.4c!,

u~r ,t !5u0~r ,t !1uR~r ,t !, ~2.5a!
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u0~r ,t ![E
k
eik–ru0~k,t !

5E
k
eik–rE

2`

t

dt8e2n0k
2~ t2t8!PT~ k̂!–Fj0~k,t8!

2
g0
r0

(
i50

N21
]H0

]r i~ t8!
e2 ik–r i ~ t8!G , ~2.5b!

uR~r ,t ![E
k
eik–ru0~k,t !5E

k
eik–rE

2`

t

dt8e2n0k
2~ t2t8!

3PT~ k̂!–F2
g0
r0

(
i50

N21
]HR

]r i~ t8!
e2 ik–r i ~ t8!G . ~2.5c!

In Eqs. ~2.5b! and ~2.5c! PT( k̂) is the transverse~along the
k̂[k/k direction! projection operator

PT~ k̂![12 k̂k̂ ~2.6!

and

E
k
[E ddk

~2p!d
~2.7!

(d is the spatial dimensionality!. The Fourier-transformed
random acceleration

j~r ,t ![E
k
eik–rj~k,t ! ~2.8!

is Gaussian and is correlated according to

^j'~k,t !j'~k8,t8!&5PT~ k̂!
2h0

r0
2 k2d~k1k8!d~ t2t8!,

~2.9!

where ' denotes the transverse componentj'(k,t)
[PT( k̂)–j(k,t).

Substituting the solution~2.5! into Eq.~2.4a!, the equation
of motion for the chain becomes

]

]t
r i~ t !52

1

z0

]H0

]r i~ t !
1g0u0„r i~ t !,t…1u0i~ t !2

1

z0

]HR

]r i~ t !

1g0uR„r i~ t !,t…. ~2.10!

Equation ~2.10! is the starting equation of our dynamic
study. Note that this equation has two stochastic terms:
g0u0„r i(t),t…, which containsj0(k,t8), andu0i(t). In other
words, the new Langevin noise is

u0i~ t !1g0E
k
eik–r i ~ t !E

2`

t

dt8e2n0k
2~ t2t8!PT~ k̂!–j0~k,t8!.

~2.11!

Obviously, this new Langevin noise is no longerd correlated
in time.

Equation~2.10! is much more complicated than its spin-
glass counterpart@3,8,9# because of the presence of the
excluded-volume interactions and the hydrodynamic cou-

pling. In polymer dynamics, quenched randomness has been
considered~for example, the mean-field dynamics of di-
rected polymer in random media studied by Vilgis@27#!, but
the randomness is from external random potential rather than
chemical dispersity. Instead of two-body excluded-volume
interactions, the random interactions become one-body and
therefore greatly simplify the issue. Also, equations similar
to Eq. ~2.10! in which the hydrodynamic effect is included
have been studied in the context of homopolymers@12–
14,21,25,28,29# and two-dimensional membranes@30#.
These studies, however, consider simpler situations in which
either quenched randomness or the excluded-volume interac-
tion is absent. Equation~2.10! considers all three effects:
quenched randomness, hydordynamic coupling, and ex-
cluded volume.

III. MEAN-FIELD APPROXIMATION
AND THE EFFECTIVE EQUATION

OF MOTION

A. Functional-integral representation

The equation of motion@Eq. ~2.10!# is essentially a~non-
linear! stochastic differential equation with colored noise
@Eq. ~2.11!# @31#. A standard and convenient method to study
stochastic differential equations is to use the functional inte-
gral formalism @the Martin-Siggia-Rose~MSR! formalism#
@7,31–33#. The main idea is to write down the probability
functional for the Langevin noises and make a change of
variables from these noises to dynamical variables. The sto-
chastic differential equation itself is treated as a constraint,
limiting the evolution of the probability path. By introducing
auxiliary fields conjugated to the dynamical variables, this
constraint, in the form of ad functional, can be written as a
functional integral of these auxiliary fields. This leads to a
probability functional in terms of the dynamical variables
and their conjugated auxiliary fields. The auxiliary-field
technique used in this formalism is similar to the technique
used in the supersymmetry formalism of stochastic differen-
tial equations, in which the auxiliary fields used are fermion
fields @32,34#.

Since the functional integral formalism for stochastic pro-
cesses is already well documented, we do not go into the
details of it. Useful references are Refs.@7,32,33#. ~The con-
cise review in Ref.@35# is also helpful.! The MSR formalism
has been widely used for the dynamic study of condensed
phase systems, for example, liquid-glass transition@35#, tur-
bulence@36#, and spin-glass dynamics@8#. Nevertheless, in
polymer physics it is not often used. This is probably be-
cause, in spite of its elegance, no new results have been
obtained through using this formalism@37,38#. The studies in
Refs. @13,14,28,29# make it clear that, for practical calcula-
tion, the MSR formalism does not achieve, at this point,
better~higher-order! results than the conventional approach
@12,25#. The mathematical involvement makes higher-order
calculations insurmountable. However, for our purposes the
MSR method is very useful as it allows us to carry out
quenched averaging in the most natural form~see below!.

Using the MSR formalism, the generating functional for
Eq. ~2.10! is

ZRu0j0
5E $Dr i~ t !%$Dr̂ i~ t !%J~$r i%!eL01LR, ~3.1!
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L05E
2`

`

dt(
i50

N21

i r̂ i~ t !–F ]

]t
r i~ t !1

1

z0

]H0

]r i~ t !

2g0u0„r i~ t !,t…2u0i~ t !G , ~3.2!

LR5E
2`

`

dt(
i50

N21

i r̂ i~ t !–F 1z0 ]HR

]r i~ t !
2g0uR„r i~ t !,t…G .

~3.3!

Note that the Langevin noisesu0 andj0 are now inL0, while
the quenched heterogeneity, represented byBi j , is in LR .
Sinceu0, j0, andBi j are not coupled, we can take the aver-
age ofZRu0j0

over these random quantities separately.

The JacobianJ($r i%) in Eq. ~3.1! is associated with the
change of variables from Langevin noises to dynamical vari-
ables~mentioned above!. Because of the following two rea-
sons, we will drop the Jacobian from our calculation from
now on. First, the specific form of this Jacobian depends on
the time-discretization scheme used when the functional in-
tegral representation is written down@39#. ~For the Stra-
tonovich scheme Refs.@40,41# work out the detailed form.!
Although it is not uniquely defined, one can get the correct
result provided one consistently uses the same discretization
scheme@42#. Second, and more importantly, the Jacobian
depends on the dynamical variables$r i%, not on the auxiliary
variables$ r̂ i%. As we can see from Eqs.~3.2! and ~3.3!, the
equation of motion@Eq. ~2.10!# is always coupled to the
auxiliary fields$ r̂ i%. This will still be true for the effective
equation of motion that we seek. Therefore, whatever form
the Jacobian has or whether it also gets averaged when we
perform averages overBi j , u0, andj0 is not important. We
do not need it anyway.

In ~3.1! only the auxiliary fields$ r̂ i% are introduced. In
principle, for the Oono-Freed kinetic equation~2.4!, there
should also be auxiliary fields$û%, as in Refs.@13,14,28,29#.
Since we are not interested in the solvent velocity fieldsu
and have eliminated it from the kinetic equation, there is no
need to introduce an auxiliary variableû for u.

For computational convenience we define three operators

Gi j ~ t,t8![
g0
2

r0
z0E

k
e2n0k

2~ t2t8!eik–[ r i ~ t !2r j ~ t8!]PT~ k̂!

~3.4!

~a symmetric tensor!,

ai~ t ![
1

2E dt8 (
j50

N21

i r̂ j~ t8!–@1d i jd~ t2t82e!u~ t2t8!

1Gj i ~ t8,t !u~ t82t !#–¹i~ t ! ~3.5!

~a scalar differential operator,e being infinitesimal and posi-
tive!, and

Oi j[E dt@ai~ t !U„r i~ t !2r j~ t !…1aj~ t !U„r j~ t !2r i~ t !…#

~3.6!

~symmetric ini and j ). Now we can rewriteLR in a more
compact form

LR5(
iÞ j

1

z0
Bi jOi j . ~3.7!

The average overBi j can be easily done and gives

Zu0j0
5E $Dr i~ t !%$Dr̂ i~ t !%eL0^eLR&B

5E $Dr i~ t !%$Dr̂ i~ t !%eL0

3expF B2

2z0
2(
iÞ j
Oi j
21

B0

z0
(
iÞ j
Oi j G . ~3.8!

B. Mean-field approximation

The generating functional obtained in Sec. III A can be
used to derive an effective equation of motion in the limit of
long chain lengthN→`. The same method is used to derive
an effective equation of motion for spin glasses@8,9# and for
directed polymers@27#. Although the algebra involved here
is more complicated, the resulting effective equation of mo-
tion shares the same characteristics as the effective equation
of motion obtained in Refs.@8,9#.

The detailed calculation in the long chain limit can be
found in Appendix B. The result is an effective Lagrangian

Le5L01
B2

z0
2E dt dt8d1 d2 d3 d4@^Ā~ t,t8,1,3!&B̄~ t,t8,2,4!

1^B̄~ t,t8,2,4!&Ā~ t,t8,1,3!

12^C̄~ t,t8,1,3!&D̄~ t,t8,2,4!#U~122!U~324!

1
2B0

z0
E dt dt8d1 d2 d3 d4@^C̄~ t,t8,1,3!&B̄~ t,t8,2,4!

1^B̄~ t,t8,2,4!&C̄~ t,t8,1,3!#d~ t2t8!U~122!, ~3.9!

where, for convenience,R1 ,R2 ,R3 ,R4 are written as 1,2,3,4,
respectively. The quantitiesĀ,B̄,C̄,D̄ are ~see Appendix B!

Ā~ t,t8,R,R8![(
i
ai~ t !ai~ t8!d„r i~ t !2R…d„r i~ t8!2R8…,

~3.10a!

B̄~ t,t8,R,R8![(
i

d„r i~ t !2R…d„r i~ t8!2R8…, ~3.10b!

C̄~ t,t8,R,R8![(
i
ai~ t !d„r i~ t !2R…d„r i~ t8!2R8…, ~3.10c!

D̄~ t,t8,R,R8![(
i
ai~ t8!d„r i~ t !2R…d„r i~ t8!2R8…. ~3.10d!

Note thatB̄ is the dynamic version of the order parameter
used in Ref.@4#. In spin-glass dynamics it is also found that
the static Edwards-Anderson order parameter should be gen-
eralized to a time-dependent order parameter whose long-
time limit gives the static order parameter@8,43#. Similarly,
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the static order parameter used in Ref.@4# can be defined as
the long-time~equilibrium! limit of this dynamic order pa-
rameterB̄. The physical meaning of the static order param-
eter is explained in Ref.@4#. We will explain later the physi-
cal meaning of the dynamical order parameterB̄.

A little reflection tells us that, first, the terms^Ā&B̄ and
^C̄&B̄ will not appear in the final effective equation of mo-
tion because they are related to the Jacobian when writing
the functional integral representation for the effective equa-
tion of motion. As explained earlier, the Jacobian does not
play an important role as far as the effective equation of
motion is concerned. Hence we can ignore these terms. Sec-
ond, the term^B̄&Ā is related to the stochastic part of the
effective equation of motion because it contains two auxil-
iary fields outside of the self-consistent average bracket
^ &. Finally, because there is only one auxiliary field outside

of the self-consistent average bracket, the terms^C̄&D̄ and
^B̄&C̄ are associated with the deterministic part.

We then take the average overu0 andj0. Because of their
Gaussian character, these averages are easy to carry out.
Note that these averages give

K expS E dt(
i
i r̂ i~ t !–@2u0i~ t !#L

u0

5expF12E dt dt8(
i

(
j
i r̂ i~ t !–^u0i~ t !u0 j~ t8!&–i r̂ j~ t8!G

~3.11!

and

K expF E dt(
i
i r̂ i~ t !–S 2g0E

k
E

2`

t

dt8e2n0k
2~ t2t8!PT~ k̂!–j0~k,t8!eik–r i ~ t !D G L

j0

5expH(
i

(
j
E dt dt8i r̂ i~ t !–Fg022 E dt̄ dt̄8E

k
E
k8

u~ t2 t̄ !u~ t82 t̄8!e2n0k
2~ t2 t̄ !e2n0k8

2~ t82 t̄ 8!eik–r i ~ t !eik8–r j ~ t8!

3^j0
'~k, t̄ !j0

'~k8, t̄8!&G–i r̂ j~ t8!J ~3.12!

in ^expL0&u0j0
and contribute additional terms to the random

part of the effective equation of motion, which is the term

^B̄&Ā in Eq. ~3.9!. Bearing this in mind, we can easily write
down the effective equation of motion.

C. Effective equation of motion and Markov approximation

1. Effective equation of motion

It is a simple matter to read off the effective equation of
motion after the average over Langevin noises is taken. We
can explicitly write down the expression for^B̄&Ā in Eq.
~3.9! and attribute terms involving the tensorGi j to the renor-
malized noisej and the rest of the terms to the renormalized
noise u. @See Eqs.~3.15! and ~3.16! below.# Because the
algebra is straightforward and slightly long, we will not write
down the details here. The result is

]

]t
r i~ t !52

1

z0

]H0

]r i~ t !
1g0J02

2B2

z0
2 J12

2B0

z0
J21ui~ t !,

~3.13!

where

J05E
k
eik–rE

2`

t

dt8e2n0k
2~ t2t8!

3PT~ k̂!–Fj~k,t8!2
g0
r0

(
i50

N21
]H0

]r i~ t8!
e2 ik–r i ~ t8!G

~3.14!

is a vector field similar to the original solvent velocity field
Eq. ~2.5b!. The renormalized Langevin noises are still
Gaussian, with variances

^ui~ t !uj~ t8!&5^u0i~ t !u0 j~ t8!&1
B2

2z0
2J3 ~3.15!

and

^j'~k,t !j'~k8,t8!&5^j0
'~k,t !j0

'~k8,t8!&1
B2g0

2

2r0
2 J4 .

~3.16!

In these equations, for convenience, we have defined vecto-
rial quantitiesJ1 and J2 and tensorial quantitiesJ3 and
J4. Their expressions are
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J15
1

2E dt8d1 d2^D̄~ t,t8,1,2!&¹i~ t !U„r i~ t !21…

3U„r i~ t8!22…1
1

2(i E dt8dt̄ d1d2^D̄~ t8, t̄,1,2!&

3u~ t2t8!Gi j ~ t,t8!–¹j~ t8!U„r j~ t8!21…U„r j~ t̄ !22…,

~3.17!

J25
1

2E d1 d2^B̄~ t,t,1,2!&¹i~ t !U„r i~ t !21…

1
1

2(i E dt8d1 d2^B̄~ t8,t8,1,2!&

3u~ t2t8!Gi j ~ t,t8!–¹j~ t8!U„r j~ t8!21…, ~3.18!

J35d i j E d1 d2^B̄~ t,t8,1,2!&¹i~ t !¹i~ t8!

3U„r i~ t !21…U„r i~ t8!22…12E dt̄ d1 d2

3^B̄~ t̄,t8,1,2!&u~ t2 t̄ !Gi j ~ t, t̄ !–¹j~ t̄ !¹j~ t8!

3U„r j~ t̄ !21…U„r j~ t8!22…

5d i j E d1d2^B̄~ t,t8,1,2!&¹i~ t !¹i~ t8!

3U„r i~ t !21…U„r i~ t8!22…

12E dt̄ d1 d2^B̄~ t, t̄,1,2!&

3u~ t82 t̄ !¹i~ t !Gj i ~ t8, t̄ !–¹i~ t̄ !

3U„r i~ t̄ !21…U„r i~ t̄ !22…, ~3.19!

J45(
i
E d1 d2^B̄~ t,t8,1,2!&e2 ik–r j ~ t !e2 ik8–r j ~ t8!

3PT~ k̂!–¹j~ t !P
T~ k̂8!–¹j~ t8!U„r j~ t !21…U„r j~ t8!22….

~3.20!

~We have suppressed all the possible dependence of these
J’s on time, monomer index, and so on.!

Note that, although Eq.~3.14! is essentially the same as
Eq. ~2.5b!, it would be incorrect to write a separate Navier-
Stokes equation, similar to Eq.~2.4c!, for J0, in which the
full Hamiltonian is replaced byH0, and claim that when the
average over the quenched randomness is performed the ef-
fective equation of motion for solvent velocity is not
changed. Recall that we have eliminated the solvent velocity
field before the average is performed. In principle, one can
explicitly introduce an auxiliary field for the solvent velocity
and perform the average over the quenched randomness to
find effective equations of motion for both the polymer con-
formation and solvent velocity. The effective equation of
motion for the solvent velocity field is presumably different
from the original Navier-Stokes equation, though we expect
that we would get the same equation as Eq.~3.13! once the

velocity field is projected out. As we mentioned in Sec. II,
our concern here is the equation of motion of the chain.
Therefore, we will make no attempt to derive an effective
Oono-Freed kinetic equation for the solvent velocity field.

Following the conventional interpretation of the MSR for-
malism @7,33#, time correlation functions of dynamical vari-
ables$r i% and their auxiliary fields$ r̂ i% are response func-
tions of the system to the perturbation associated with$ r̂ i%.
Causality requires that these response functions should be
vanishing if any of the time variables of the auxiliary fields
$ r̂ i% is larger than all the time variables of the dynamical
variables$r i%. Imposing this causality requirement upon Eqs.
~3.10!, it can be shown that causality indeed holds in the
effective equation of motion Eq.~3.13!.

2. Markov approximation

The essential ingredients of the proof given in Appendix
A are ~i! elimination of the solvent velocity field and~ii ! the
Markov approximation. Physically,~i! means an average
over the solvent velocity and~ii ! means that the characteris-
tic time scale for solvent dynamics is much shorter than the
characteristic time scale for the motion of the chain.

We adopt the same spirit of Appendix A. As the velocity
field has been eliminated, we now apply the Markov ap-
proximation to further simplify the effective equation of mo-
tion. The Markov approximation is

e2n0k
2~ t2t8!→

2

n0k
2 d~ t2t8!. ~3.21!

Within this approximation, the Oseen tensor

T~r ,r 8![E
k

1

h0k
2P

T~ k̂!eik–~r2r8! ~3.22!

appears, for example,

Gi j ~ t,t8!52g0
2z0d~ t2t8!T„r i~ t !,r j~ t !…. ~3.23!

Using the Markov approximation we can largely simplify the
effective equation of motion.

Since we seek the result only to the lowest nontrivial or-
der, that is, to the lowest order inB, g0, andB0, we can
simplfy the expressions ofJ by dropping all the higher-order
terms. For convenience, we define

r̄~R,t ![K (
i

d„r i~ t !2R…L , ~3.24!

G~ t,t8,1,2![K (
i

d„r i~ t !21…i r̂ i~ t8!d„r i~ t8!22…L ,
~3.25!

C~ t,t8,1,2![K (
i

d„r i~ t !21…d~r i~ t8!22!L , ~3.26!

where the angular brackets are the self-consistent mean-field
average defined by Eq.~B13! in Appendix B. The mean-field
kinetic equation~3.13! then reduces to
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]

]t
r i~ t !52

1

z0

]Heff

]r i~ t !
2g0

2(
j
T~r i ,r j !–

]Heff

]r j~ t !
1mi~ t !,

~3.27!

where the new Langevin noisem is Gaussian with variance

^mi~ t !mj~ t8!&5
2

z0
d~ t2t8!d i j112g0

2d~ t2t8!T„r i~ t !,Rj~ t !…

1
B2

2z0
2 d i j E d1 d2C~ t,t8,1,2!

3
]U„r i~ t !21…

]r i~ t !

]U„r i~ t8!22…

]r i~ t8!
. ~3.28!

The effective HamiltonianHeff becomes

Heff5H01B0(
i
E d1r̄~r ,t !U„r i~ t !21…

2
B2

2z0
(
i
E

2`

t2

dt8E d1 d2

3G~ t,t8,1,2!–
]U„r i~ t8!22…

]r i~ t8!
U„r i~ t !21…,

~3.29!

wheret2[t2e, e being infinitesimal and positive.
These equations have the form of the nonlinear general-

ized Langevin equation@44,45#. However, the reason for the
emergence of this nonlinear generalized Langevin equation
is different from that in Refs.@44,45#. It is from the elimina-
tion of the heterogeneity of the original system rather than
from the elimination of the degrees of freedom of surround-
ing ‘‘bath’’ molecules. Here the elimination of the surround-
ing bath molecules does not cause any memory effect be-
cause the Markov approximation is used.

In generalized hydrodynamics one can define frequency-
and wavelength-dependent transport coefficients@46#. Simi-
larly, in Eq. ~3.29!, the term containing the heterogeneity
parameterB can be seen as giving a time-dependent
excluded-volume interaction. Alternatively, since this term is
nonlocal in time, one can say that the heterogeneity intro-
duces an excluded-volume interaction along the world line,
in addition to the usual excluded-volume interactionB0
along the chain contour.

Inspecting these equations, we find that they are similar,
albeit more complicated, to the effective kinetic equation ob-
tained in spin-glass dynamics@8,9#. In these works a memory
function also appears in the mean-field limit. In principle,
one can expand the monomer-monomer interactionU in
terms of dynamical variablesr i(t). This expansion will lead
to a generalization of thep-spin-interaction spin-glass dy-
namics discussed in Ref.@9#. However, since one will get
infinite p-spin-interaction terms, this approach does not seem
to be practically feasible.

We can now take the known result for homopolymer as a
reference. When we set the chain heterogeneityB equal to
zero, Eq.~3.27! is expected to reduce to the same equation
obtained from eliminating the solvent velocity field in the
Oono-Freed kinetic equation~see Appendix A!

]

]t
r i~ t !52

1

z0

]HE

]r i~ t !
2g0

2(
j
T„r i~ t !,r j~ t !…–

]HE

]r j~ t !
1mi

E~ t !,

~3.30!

^mi
E~ t !mj

E~ t8!&5
2

z0
d~ t2t8!d i j1

12g0
2d~ t2t8!T„r i~ t !,r j~ t !…, ~3.31!

whereHE is the Edwards Hamiltonian~2.3!. This equation
reveals that the lowest-order approximation ofr̄(R,t) must
be the usual monomer density. Any higher-order correction,
after being multiplied byB0, must be of first or higher order
in B0, g0

2/h0, orB
2/z0. To the order of our calculation, these

corrections can be dropped. Therefore, we can replace
r̄(R,t) by its corresponding unbracketed quantity

r̄~R,t ![(
i

d„r i~ t !2R…. ~3.32!

Taking into account the symmetry of monomer indices,
which should be restored when the self-consistent bracket is
removed, the effective Hamiltonian~3.29! becomes

Heff5H01
B0

2 (
i , j

U„r i~ t !2r j~ t !…

2
B2

2z0
(
i
E

2`

t2

dt8E d1 d2

3G~ t,t8,1,2!–
]U„r i~ t8!22…

]r i~ t8!
U„r i~ t !21….

~3.33!

Since there is no corresponding known result forB050 and
BÞ0 ~a heteropolymer chain in theu solution!, we cannot
find a lowest order approximation forG using the same
method.

The quantityG(t,t8,R1 ,R2) in Eq. ~3.33! gives the re-
sponse field of the chain at timet, when the chain confor-
mation is d„r i(t)2R1…, to a perturbation introduced by
r̂ i(t8) at time t8 when the chain conformation was
d„r i(t8)2R2…. ~The perturbation can be explicitly introduced
in the kinetic equation, in the same way as the perturbative
magnetic field used in@8,9#. For simplicity it is not included
here.! Causality again is respected and the integral oft8 in
the effective Hamiltonian is limited by the current timet.

The quantityC(t,t8,R1 ,R2) in the correlation function of
the renormalized noisemi @Eq. ~3.28!# gives the correlation
function of chain conformations, between conformation
d„r i(t)2R1… at timet andd„r i(t8)2R2… at timet8. This is a
natural dynamical generalization of the static order param-
eter proposed in Ref.@4#.

The effective Hamiltonian is time dependent. The
memory function G(t,t8) makes the chain conformation at
time t depend on all the past chain conformations. This
memory term makes the kinetic equation non-Markovian and
writing a Fokker-Planck equation for it is impossible. It is
well known that a non-Markovian process can be made Mar-
kovian by introducing new degrees of freedom~e.g., the ex-
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ample in Ref.@47#!. However, in our case, this would be
equivalent to returning to the original Oono-Freed kinetic
equations where the process was Markovian, because what
has been done is exactly the elimination of some degrees of
freedom~heterogeneity and solvent! from the original Mar-
kovian process. Of course, a Fokker-Planck-like equation
can be written for a generalized Langevin equation such as
Eqs.~3.27! and~3.33!, but this would not give a closed equa-
tion. Instead, it gives an equation with infinite terms~e.g., a
Kramers-Moyal expansion! @31#.

On the other hand, a Fokker-Planck equation with
memory effect has been developed by Zwanzig@48#. It is
also shown in Ref.@48# that, after certain approximations,
the memory Fokker-Planck equation can be transformed into
a generalized Langevin equation. This seems to allow us to
transform the generalized Langevin equation obtained here
back to a memory Fokker-Planck equation. However, it is
not clear how to perform this backward transformation.

These considerations make it clear that trying to write
down a generalized~memory! Kirkwood diffusion equation
for the mean-field equation of motion Eq.~3.27! would be
very difficult, if not impossible. Fortunately, although the
relaxation spectrum is calculated in Ref.@17# by perturba-
tively solving the Kirkwood diffusion equation, one can also
derive the relaxation times directly from the kinetic equation.
As it is clear from the above analysis, we should not try to
find the corresponding generalized Kirkwood diffusion equa-
tion but rather derive the relaxation spectrum directly from
the kinetic equation. This is done in the next section.

IV. MODE RELAXATION SPECTRUM

A. Transition to continuous model

For convenience, we now rewrite the effective equation of
motion in terms of continuous chain notation. We will use
the standard notation@12,19#, t being the contour length
measured along the chain andc(t,t) the position of the point
at t. A short-distance cutoffa will be implicitly assumed in
the following equations so thatut2t8u.a for all double
integrals overt and t8. The upper limit of contour length
can beN21, according to Eq.~2.1!, or N, becauseN has
been taken to be very large in the mean-field approximation.
We will useN as the upper limit of the contour length so that
one can readily compare our result with the result of Ref.
@17#.

The effective equation of motion in continuous chain no-
tation is

]

]t
c~t,t !52

1

z0

dHeff

dc~t,t !
2g0

2E dt8T„c~t,t !

2c~t8,t !…–
dHeff

dc~t8,t !
1m~t,t !, ~4.1!

where

^m~t,t !m~t8,t8!&5
2

z0
1d~ t2t8!d~t2t8!

12g0
2d~ t2t8!T„c~t,t !2c~t8,t8!…

1
B2

2z0
2 d~t2t8!E d1 d2C~ t,t8,1,2!

3
dU„c~t,t !21…

c~t,t !

dU„c~t8,t8!22…

c~t8,t8!
,

~4.2!

Heff5HE2
B2

2z0
E dtE

2`

t2

dt8E d1 d2

3G~ t,t8,1,2!–
dU„c~t,t8!22…

dc~t,t8!
U„c~t,t !21…,

~4.3!

HE5
1

2E dtU ]

]t
c~t,t !U21 B0

2 E dt dt8U„c~t,t !2c~t8,t !…,

~4.4!

G~ t,t8,1,2!5E dt^d„c~t,t !21…i ĉ~t,t8!d~c~t8,t !22!&,

~4.5!

C~ t,t8,1,2!5E dt^d„c~t,t !21…d~c~t8,t !22!&,

~4.6!

T„c~t,t !2c~t8,t !…5E
k

1

h0k
2P

T~ k̂!eik–[c~t,t !2c~t8,t !] .

~4.7!

From now on the potentialU„c(t,t)2c(t8,t)… will be
taken as a hard-core repulsive interactiond„c(t,t)
2c(t8,t)… so that we can compare our result with Ref.@17#.
For a general potential the corresponding equations can, in
principle, be similarly written down.

Equation~4.1! essentially describes a nonequilibrium pro-
cess. In spin-glass dynamics, as mentioned above, a similar
equation can be obtained through the same mean-field ap-
proximation@8,9#. In Refs.@8,9#, it is assumed that the pro-
cess is stationary. While the newly developed out-of-
equilibrium dynamics of spin glasses@49# is potentially able
to address nonstationary dynamics, we will assume that in
our case the process is stationary. This assumption gives

G~ t,t8,1,2!5G~ t2t8,1,2!, ~4.8!

C~ t,t8,1,2!5C~ t2t8,1,2!. ~4.9!

B. Perturbation calculation

The conventional method used to determine the spectrum
of mode relaxation, especially the longest relaxation time, is
to find the eigenvalues and eigenfunctions for the Fokker-
Planck operator@17#. This approach is useful as long as a
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Fokker-Planck equation exists. However, as we have ana-
lyzed in the preceding section, this is not the case here.

Nevertheless, since what we want to find is the longest
relaxation time, we can simply use perturbation method to
find out how the kinetic coefficient is renormalized, with the
same spirit of Refs.@50,51#. In principle, it is possible to
develop a diagrammatic method, similar to the diagrammat-
ics developed in Ref.@52#, to systematically calculate desired
quantities. However, this would not make much sense be-
cause Eq.~4.1! is valid only to the lowest nontrivial order. A
straightforward perturbation calculation will be sufficient.

Introducing the Rouse coordinatesj(p,t),

j~p,t ![A2

NE0
N

dt c~t,t !cosS ppt

N D , ~4.10!

and its Fourier transform

j~p,v![E
2`

`

dt j~p,t !eivt, ~4.11!

the equation of motion becomes

G0
21~p,v!j~p,v!52

B0

z0
A2

NE dt dt8dtE
k
eivtikcosS ppt

N D expF iA2

N
k–(

p8
E

v8
e2 ivt8j~p8,v8!Qp8~t,t8!G

2g0
2 2

NE dt dt8dtE
k
E

v
(
p8

eivtS p8p

N D 2 1

h0k
2cosS ppt

N D cosS p8pt8

N D
3expF iA2

N
k–(

p9
E

v9
e2 iv9tj~p9,v9!Qp9~t,t8!GPT~ k̂!–j~p8,v8!e2 iv8t

1
B2

2z0
2A2

NE dt dt d1d2E
2`

t2

dt8E
k
E
k8
eivtG~ t,t8,1,2!–ik8ikcosS ppt

N D e2 ik8–R2

3expF iA2

N
k8–(

p9
E

v9
j~p9,v9!e2 iv9t8cosS p9pt

N D Ge2 ik–R1

3expF iA2

N
k–(

p8
E

v8
j~p8,v8!e2 iv8tcosS p8pt

N D G1m~p,v! ~4.12!

and

^m~p,v!m~p8,v8!&5
2

N

2

z0
1E dt dt ei ~v1v8!tcosS ppt

N D cosS p8pt

N D
1
2

N
2g0

2E dt dt dt8ei ~v1v8!tcosS ppt

N D cosS p8pt8

N DT„c~t,t !2c~t8,t !…

1
2

N

B2

2z0
2E dt dt dt8eivteiv8t8cosS ppt

N D cosS p8pt

N D E d1 d2 C~ t,t8,1,2!

3
dd„c~t,t !21…

dc~t,t !

dd~c~t,t8!22!

dc~t,t8!
, ~4.13!

where we have defined

E
v
[E dv

2p
, ~4.14!

G0
21~p,v![2 iv1Lp , Lp[

1

z0
S pp

N D 2, ~4.15!

Qp~t,t8![cosS ppt

N D2cosS ppt8

N D . ~4.16!

Since we need to carry out calculations only to the lowest
nontrivial order, we can iterate these equations once and
drop all the higher-order terms. The detailed calculation can
be found in Appendix C. It is shown in Appendix C that the
relaxation spectrumLp is renormalized by three terms at the
lowest nontrivial order,

dLp
~1!52

B0

z0

2

NE dt dt8E
k

k2

d
cosS ppt

N D
3Qp~t,t8!e2k2BN~t,t8!, ~4.17!
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dLp
~2!52

g0
2

h0

2

NS pp

N D 2E dt dt8E
k

121/d

k2
cosS ppt

N D
3cosS ppt8

N De2k2BN~t,t8!, ~4.18!

dLp
~3!52

B2

2z0
2

2

NE dtE
k
cosS ppt

N D cosS ppt8

N D
3 i @G̃~t,0,k!2G̃~t,2v,k!#–k

k2

d
. ~4.19!

Compared to the result obtained in Ref.@17#, Eqs.~4.17!
and ~4.18!, renormalizations due to the excluded-volume in-
teraction and hydrodynamic interaction, respectively, coin-
cide with the results reported there. The additional renormal-
ization due to the chain heterogeneity parameterB is given
by dLp

(3) . It is found in Ref.@17# that the renormalizations
from excluded-volume and hydrodynamic effects are inde-
pendent of each other, at the lowest nontrivial order. Here we
see that the addition of heterogeneity preserves this indepen-
dence: All three effects are not coupled at the lowest non-
trivial order.

It has been shown that in spin glasses there exists a criti-
cal temperature below which the replica symmetric solution
is not stable@3#. Below this transition temperature, there are
infinite ground states so that the system displays nonergodic
behavior. This nonergodic behavior is responsible for many
characteristics of the spin glasses below the transition tem-
perature@3#. It is proposed in Ref.@8# that, in an infinite
system, the fluctuation-dissipation theorem~FDT! should be
violated below the spin-glass transition temperatureTc .
Mathematically, the violation comes from the extra time-
persistent term in the correlation and response functions.
Physically, the breaking of the FDT is caused by the noner-
godic behavior of the system. The response function contains
not only the usual response obeying the FDT but also a time-
persistent part corresponding to the crossing of the energy
barriers between the ground states. Reference@8# also shows
that the breaking of the FDT is needed in order to make the
static mean-field solution of the Sherrington-Kirkpatrick
~SK! model stable.

It is clear that this dynamical consequence~i.e., breaking
of the FDT! is closely related to the static property~many
ground states! of the SK model of spin glasses. Reference@4#
shows that a freezing transition can occur in heteropolymers
at which only few conformations~states! dominate in the
partition function. One might expect some dynamic conse-
quences, and in fact it was suggested@18# that static freezing
in heteropolymers is accompanied by that dynamic freezing.
This assertion was made based on the phenomenological
analysis that extends the random energy model to kinetics.
The model used in@18# employs an unphysical assumption
that two states connected by one kinetic step have statisti-
cally independent energies; it is this assumption that leads to
the conclusion about the glass transition in this system@53#.
Our microscopic analysis, Eq.~4.19! shows that, within the
order of our calculations whether or not the FDT is broken,
dynamically, there is no effect at all. This is because the
G̃(t,0,k) term exactly cancels the time-persistent part of the
response field if the temperature is below the transition tem-

perature. Since the time-persistent part of the response func-
tion is directly related to the degeneracy of the ground states,
this result implies that this degeneracy is dynamically unob-
servable, at least to the lowest nontrivial order. This in turn
may mean that barriers between low-energy states are non-
extensive~in N) in the studied model of heteropolymer.

One may argue that the violation of the FDT happens only
when the system is infinitely largeN5` and, since only
largeN is imposed in the derivation of the effective equation
of motion, breaking of the FDT does not happen and the
above argument is not quite right. Nevertheless, what really
matters is that the termG̃(t,0,k)2G̃(t,2v,k) makes all
static ~zero-frequency! effects dynamically null and corre-
sponding static freezing phenomena may not have their dy-
namic counterparts in this system.

Carefully checking the calculation that leads to the term
G̃(t,0,k)2G̃(t,2v,k) in Eq. ~4.19!, we see that it is rooted
in the two exponential functions in theB-dependent term in
Eq. ~4.12!. This makes it clear that the chain flexibility is
responsible for the dynamically null result. Physically, this is
a plausible result. The quenched randomness in Eq.~2.1! is
quenched along the chain, but not in the space in which the
heteropolymer is embedded. As we do not expect a dilute
liquid mixture of magnetic and nonmagnetic particles dis-
playing any ‘‘frozen in’’ behavior observed in its solid mix-
ture counterpart, e.g., spin glasses, we do not expect a full
spin-glass-like behavior in heteropolymers because the ran-
domness is not fully quenched in space. We can say that the
correspondence between spin glasses and heteropolymers is
more statically than dynamically complete. The analogy be-
tween spin glasses and biopolymers therefore has to be used
with some care, especially in buildingad hocphenomeno-
logical models not supported by microscopic analysis.

V. ANALOGY BETWEEN SPIN GLASSES
AND HETEROPOLYMERS

It is well known that there exists an elegant correspon-
dence between magnetic systems and self-avoiding random
walks, e.g., a polymer chain with excluded-volume effect.
This correspondence can be shown perturbatively and ana-
lytically @20,54,55#. From the point of view of this complete
correspondence, it seems that the analogy between spin
glasses and heteropolymers should be also complete. How-
ever, according the result obtained in the preceding section,
one has to be careful when using this analogy. Therefore, it
is necessary to think more about this analogy in the context
of the correspondence. We now give a qualitative discussion
of this analogy.

There are different ways to establish the correspondence
between magnetic systems and self-avoiding random walks
@20#. Here we will follow the analytical proof given in Ref.
@55#. Using the result obtained in Ref.@55#, we know that the
model considered here corresponds to an Ising model with a
nonrandom nearest-neighbor interaction and a random four-
spin coupling. More precisely, Eqs.~2.1! can be obtained
from then50 limit of the soft-spin Hamiltonian

H5(
a

n

(
i , j

N

Ji js ias ja1(
i

N F r(
a

n

s ia
2 1

Bi j

2 S (
a

n

s ia
2 D 2G ,

~5.1!
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where r serves as a variable for the Laplace transform~in
order to obtain the partition function of the walk! and its
value need not be specified in our discussion. Further details
of this correspondence can be found in@55#.

Comparing this Hamiltonian with the one considered in
spin-glass dynamics@8#, in terms of soft spin

H5
1

2(̂i j & ~r 0d i j22bJi j !s is j1u(
i

s i
42(

i
his i ,

~5.2!

we see that the main difference is where the randomness
enters. Equation~5.2! has the quenched randomnessJi j be-
ing a two-spin coupling, while the random couplingBi j in
Eq. ~5.1! is in a four-spin term. Note that the Hamiltonian
~5.1! is also different from thep-spin-interaction spin glass
studied in Ref.@9#,

H52 (
i1, i2•••, i p

Ji1••• i ps i1
•••s i p

2(
i51

N

his i ~5.3!

or, in terms of soft spin,

H5(
i

F r 02 s i
21us i

4G2b( Ji1••• i ps i1
•••s i p

2b(
i51

N

his i .

~5.4!

Although Eq.~5.4! appears to be very similar to Eq.~5.1!,
theO(n)-symmetry-preserving termBi j in Eq. ~5.1! makes
the story entirely different. It is unclear, and seems unlikely,
that the~qualitative! dynamic features obtained in Refs.@8,9#
have their counterparts in the dynamics of Eq.~5.1!. In fact,
we are not aware of any study of Eq.~5.1! itself as a possible
spin-glass model.

@Perhaps the3He-4He-aerogel system mentioned in the
Introduction is more relevant to the heteropolymer solution
than the spin-glass system. We argued in Sec. IV that the
randomness in heteropolymer solution is not completely
quenched in space. In the3He-4He-aerogel system, accord-
ing to the picture proposed by Chan and co-workers@2#, at
low 4He concentration,4He atoms can be seen as ‘‘partially
quenched’’: Some are bound onto the aerogel, which is com-
pletely quenched, while some are in a freely moving super-
fluid phase. This interplay of quenched randomness and an-
nealed randomness has been theoretically studied by Maritan
et al. @56# using the so-called Blume-Emery-Griffiths~BEG!
Hamiltonian @57#. Interestingly, the similarity between the
BEG Hamiltonian@56,57# and Eq.~5.1! seems closer than
that between Eqs.~5.2! and ~5.4!.#

The above observation is only at the level of the Hamil-
tonian used in each model. In fact, a more significant differ-
ence at the level of kinetic equation exists. In the Oono-
Freed kinetic equation~2.4! the dynamical variables are
monomer positions$r i% and the solvent velocity fieldu. On
the other hand, the dynamical variables used in Refs.@8,9#
are spin components$s i%. When n→0, spins$s i% do not
become monomer positions$r i% and the solvent velocity
field u. Although the effective equation of motion does share
some common features~e.g., memory effect and renormal-
ized noise!, with the ones found in the spin-glass study, these
are the features common to the machinery, namely, func-

tional integral formalism plus mean-field approximation.
Having these common features still allows entirely different
physics. As we argued at the end of Sec. IV A, our system is
somewhat intermediate between the solid and molten phases
of dilute magnets and is perhaps more similar to the
3He-4He mixture in porous media than spin glasses.

VI. CONCLUSION

The main result of this paper is the effective equations of
motion ~3.13! and ~3.27! and the renormalized relaxation
spectrum. We first ask how adaptive our model is. In poly-
mer dynamics much work has been done on homopolymers.
As a first order approximation, if the heterogeneity of the
chain is not important, the homopolymer is a reasonable
model. It is seen in the above calculation that the lowest-
order effect of the heterogeneity parameterB is proportional
to B2. This implies that the effect of heterogeneity is small
and probably ignorable. On the other hand, to proceed fur-
ther to next order approximation, one cannot ignore the es-
sential difference between homopolymers and heteropoly-
mers. Furthermore, it is also known that the naturally
occurring heteropolymers such as proteins are composed of
at most 20 types of monomers~amino acids!. In this sense
the approximation of independent interaction energiesBi j
employed in this paper may be reasonable: It was shown@4#
that the greater the number of monomer types, the better the
approximation of independentBi j .

Furthermore, in a recent simulation@58#, it was shown
that in the early stage of the collapse of the homopolymer,
from a coil state to a globule state, some clusters form along
the chain. One way to see this process is to view the chain
with clusters of various sizes as an effective heteropolymer
chain formed by monomers and clusters. This is plausible if
one uses a coarse-grained viewpoint. One may argue that
these clusters are not stable; they constantly form and anni-
hilate. However, on average and in a coarse-grained sense,
this constant birth and death of clusters probably can be ig-
nored because the clusters seldom grow larger than a certain
scale, as the simulation shows. We may take the upper length
scale of these clusters as a basic length scale in the model
and treat the clusters as heterogeneous monomers. These
clusters may have different sizes and masses, which are also
allowed in our model because sizes and masses of monomers
do not appear in the Oono-Freed kinetic equation. In this
sense, our model can also serve as a model for a homopoly-
mer chain in a poor solvent during its early stage~before the
three-body interactions become important! of collapse.

Ideally, similar to Ref.@17#, the next calculation would be
applying the renormalization-group technique to find the
scaling form of the relaxation spectrum. This does not seem
promising, however. To perform this calculation, we need an
ansatz for thev dependence of G(v,k), analogous to the
one used in spin-glass dynamics@8#, as well as an ansatz for
its k dependence. Nevertheless, we do not expect that the
renormalization-group calculation, even if it is possible, will
change the conclusion regarding the dynamically null effect
of the time-persistent part of response function, reached in
Sec. IV B.

The most important development of the present model
would be to incorporate chain compaction, i.e., consider the
dynamics of the heteropolymer globule. Another relevant
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and important aspect of polymer dynamics that may be stud-
ied along these lines is the kinetics of coil-globule transitions
@59# which may be relevant also for protein folding.
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APPENDIX A: DERIVATION OF THE KIRKWOOD
DIFFUSION EQUATION

We show here that the Kirkwood diffusion equation can
be derived directly without the projection technique used in
Refs. @12,16#. If the Hamiltonian is the Edwards Hamil-
tonian, the equation of motion derived from Eqs.~2.4! will
be @cf. Eq. ~2.10#

]

]t
r i~ t !52

1

z0

]HE

]r i~ t !
1g0u0

E
„r i~ t !,t…1u0i~ t !

1g0uR
E
„r i~ t !,t…, ~A1!

u0
E~r ,t !5E

k
eik–rE

2`

t

dt8e2n0k
2~ t2t8!

3PT~ k̂!–F2
g0
r0

(
i50

N21
]HE

]r i~ t8!
e2 ik–r i ~ t8!G , ~A2!

uR
E~r ,t !5E

k
eik–rE

2`

t

dt8e2n0k
2~ t2t8!PT~ k̂!–j0~k,t8!.

~A3!

When the Markov approximation is applicable,

e2n0k
2~ t2t8!→

2

n0k
2 d~ t2t8!, ~A4!

the equation of motion becomes

]

]t
r i~ t !52

1

z0

]HE

]r i~ t !
2g0

2(
j
T„r i~ t !,r j~ t !…

]HE

]r j~ t !
1u0i~ t !

1g0E
k
eik–r i ~ t !

1

h0k
2P

T~ k̂!–j~k,t !. ~A5!

Equation ~A5! is a Langevin equation with noise
uE„r i(t),t…[u0i(t)1g0uR

E
„r i(t),t… satisfying

^uE„r i~ t !,t…u
E
„r j~ t8!,t8…&52z0d~ t2t8!d i j1

12g0
2T„r i~ t !,r j~ t8!…d~ t2t8!.

~A6!

The Fokker-Planck equation corresponding to this Langevin
equation is

]

]t
P~$r i%,t !5(

i
(
j

]

]r i
–@z211d i j

1g0
2T~r i ,r j !#–F ]

]r j
1

]HE

]r j
GP~$r i%,t !,

~A7!

where P($r i%,t) is the probability distribution function of
chain conformation$r i%. Equation~A7! is exactly the Kirk-
wood diffusion equation.

APPENDIX B: DERIVATION OF THE EFFECTIVE
LAGRANGIAN

Here we detail the calculation.

1. ( iÞ jOi j
2 term

Define

Ā~ t,t8,R,R8![(
i
ai~ t !ai~ t8!d„r i~ t !2R…d„r i~ t8!2R8…,

B̄~ t,t8,R,R8![(
i

d„r i~ t !2R…d~r i~ t8!2R8!,

C̄~ t,t8,R,R8![(
i
ai~ t !d„r i~ t !2R…d„r i~ t8!2R8…,

D̄~ t,t8,R,R8![(
i
ai~ t8!d„r i~ t !2R…d„r i~ t8!2R8….

~B1!

Note the symmetry

Ā~ t,t8,R,R8!5Ā~ t8,t,R8,R!,

B̄~ t,t8,R,R8!5B̄~ t8,t,R8,R!,

C̄~ t,t8,R,R8!5D̄~ t8,t,R8,R!, ~B2!

and they are all of orderO(N2). Then, writingR1, R2, R3, R4
as 1, 2, 3, 4, respectively

(
iÞ j
Oi j
25

1

2E dt dt8d1 d2 d3 d4@Ā~ t,t8,1,3!B̄~ t,t8,2,4!

1Ā~ t,t8,2,3!B̄~ t,t8,1,4!1Ā~ t,t8,1,4!B̄~ t,t8,2,3!

1Ā~ t,t8,2,4!B̄~ t,t8,1,3!1C̄~ t,t8,1,3!D̄~ t,t8,2,4!

1C̄~ t,t8,2,3!D̄~ t,t8,1,4!1C̄~ t,t8,1,4!D̄~ t,t8,2,3!

1C̄~ t,t8,2,4!D̄~ t,t8,1,3!#

3U~122!U~324!1O~N!. ~B3!

Let column matrixc(t,t8,1,2,3,4) and 16316 matrixS1
be
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cA~ t,t8,1,2,3,4![S Ā~ t,t8,1,3!

Ā~ t,t8,2,3!

Ā~ t,t8,1,4!

Ā~ t,t8,2,4!
D ,

~B4!

cB~ t,t8,1,2,3,4![S B̄~ t,t8,2,4!

B̄~ t,t8,1,4!

B̄~ t,t8,2,3!

B̄~ t,t8,1,3!
D ,

cC~ t,t8,1,2,3,4![S C̄~ t,t8,1,3!

C̄~ t,t8,2,3!

C̄~ t,t8,1,4!

C̄~ t,t8,2,4!
D ,

~B5!

cD~ t,t8,1,2,3,4![S D̄~ t,t8,2,4!

D̄~ t,t8,1,4!

D̄~ t,t8,2,3!

D̄~ t,t8,1,3!
D ,

c~ t,t8,1,2,3,4![S cA~ t,t8,1,2,3,4!

cB~ t,t8,1,2,3,4!

cC~ t,t8,1,2,3,4!

cD~ t,t8,1,2,3,4!
D ,

~B6!

S1[S 0 14 0 0

14 0 0 0

0 0 0 14

0 0 14 0
D ,

where 14 is a 434 unit matrix. Then

(
iÞ j
Oi j
25

1

4E dt dt8d1 d2 d3 d4 cT~ t,t8,1,2,3,4!

3S1c~ t,t8,1,2,3,4!U~122!U~324!1O~N!.

~B7!

2. ( iÞ jOi j term

The calculation for( iÞ jOi j can be performed in a similar
way. However, because of the symmetry ofC̄ andD̄, there is
an ambiguity in expressing( iÞ jOi j as a sum of products of
C̄ and B̄, or of C̄ and B̄, or a mixed type. This should not
make the final result different, as we expect the same sym-
metry can be used to convert fromC̄ and D̄ or vice versa.

If we express( iÞ jOi j in terms of products ofC̄ and B̄,
then

(
iÞ j
Oi j5

1

4E dt dt8d1 d2 d3 d4 cT~ t,t8,1,2,3,4!

3S2c~ t,t8,1,2,3,4!U~122!d̄~ t2t8!1O~N!,

~B8!

S2[S 0 0 0 0

0 0 14 0

0 14 0 0

0 0 0 0
D , ~B9!

where the overbarred delta functiond̄ is used to denote that
the integral over time variables, hence thed function, has to
be done after the integral over space variables has been per-
formed.

3. Gaussian transform and mean-field approximation

Combining the results from the previous two sections,
^eLR&B in Eq. ~3.8! can be written as

expH E dt dt8d1 d2d3 d4F B2

8z0
2cTS1cU~122!

3U~324!
B0

4z0
cTS2cU~122!d̄~ t2t8!G1O~N!J .

~B10!

Introducing the variablesQ1(1,2,3,4)•••Q16(1,2,3,4) and
performing a Gaussian transform, the generating functional
Zu0j0

becomes

Zu0j0
5E $Dr i%$Dr̂ i%$DQi%

3expF2
1

4
QTAQ1QTc1L01O~N!G ,

~B11!

where

$DQi%[)
i51

16

DQi . ~B12!

Q is the column matrix formed byQ1•••Q16 andA is the
coefficient of the quadratic term in Eq.~B10!.

Using the steepest-decent method, the mean-field approxi-
mation gives
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2U~122!U~324!^D̄~ t,t8,2,4!&
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B0
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Q10
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B2

4z0
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1
B0

2z0
U~122!d̄~ t2t8!^B̄~ t,t8,1,4!&,

Q11
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B2

4z0
2U~122!U~324!^D̄~ t,t8,2,3!&

1
B0

2z0
U~122!d̄~ t2t8!^B̄~ t,t8,2,3!&,

Q12
0 ~ t,t8,1,2,3,4!5

B2

4z0
2U~122!U~324!^D̄~ t,t8,1,3!&

1
B0

2z0
U~122!d̄~ t2t8!^B̄~ t,t8,1,3!&,

Q13
0 ~ t,t8,1,2,3,4!5

B2

4z0
2U~122!U~324!^C̄~ t,t8,1,3!&,

Q14
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B2
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Q15
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Q16
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where the angular brackets mean

^ &5

E $Dr i%$Dr̂ i%~••• !eL0eQ
Tc

E $Dr i%$Dr̂ i%eL0eQ
Tc

. ~B13!

The mean-field solution forQi
0 is determined self-

consistently from these equations. Therefore, the effective
LagrangianLe[L01(Q0)Tc is

Le5L01
B2

z0
2E dt dt8d1 d2 d3 d4 U~122!U~324!

3@^Ā~ t,t8,1,3!&B̄~ t,t8,2,4!1^B̄~ t,t8,2,4!&Ā~ t,t8,1,3!

12^C̄~ t,t8,1,3!&D̄~ t,t8,2,4!#

1
2B0

z0
E dt dt8d1 d2 d3 d4 d~ t2t8!U~122!

3@^C̄~ t,t8,1,3!&B̄~ t,t8,2,4!

1^B̄~ t,t8,2,4!&C̄~ t,t8,1,3!#. ~B14!

APPENDIX C: FIRST-ORDER CORRECTION
OF RELAXATION SPECTRUM

The equation of motion in Sec. IV B has the form

G0
21~p,v!j~p,v!5m~p,v!1F@j,p,v#. ~C1!

Substituting the zeroth-order solution

G0
21~p,v!j~0!~p,v!5m~p,v! ~C2!

into the equation of motion, the first-order solution is

j~1!~p,v!5G0~p,v!m~p,v!1G0~p,v!F@j~0!,p,v#.
~C3!

This solution contains terms to the lowest nontrivial order.
Sincej enters inF through exponential function, further it-
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eration does not change the result of the lowest nontrivial
order. Therefore, to the lowest nontrivial order, the solution
is

j~p,v!5G0~p,v!m~p,v!1G0~p,v!F@j~0!,p,v#.
~C4!

To find the relaxation spectrum, we find the average~over
m) of the tensor product

j~p,v!j~p8,v8!5G0~p,v!G0~p8,v8!m~p,v!m~p8,v8!

1G0~p,v!G0~p8,v8!@m~p,v!

3F~0!~p8,v8!1m~p8,v8!F~0!~p,v!#,

~C5!

whereF(0)(p,v)[F@j(0),p,v# and the term containing two
F(0)(p,v) has been dropped becauseF(0)(p,v) is already in
lowest nontrivial order.

Let
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, ~C6!
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We find
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5G0~p,v!G0~p,2v!

2

z0 F2pd~v1v8!dp,p81

2G0~p8,v8!G0~p8,2v8!
2

z0
2

2

N
kkei ~v1v8!t

3Qp~t,t8!Qp8~t,t8!Ge2k2BN~t,t8!, ~C9!

K j~0!~p,v!expF iA2

N
k–(

p8
E

v8
j~p8,v8!cos

p8pt

N

3~e2 iv8t2e2 iv8t8!G L
5G0~p,v!G0~p,2v!

2

z0
A2

N
ik~eivt2eivt8!

3cos
ppt

N
e2k2BN

B
~t,t,t8!. ~C10!

As noted in Sec. IV A, we confine ourselves to the sta-
tionary case. Therefore,

G~ t,t8,k!5G~ t2t8,k!, ~C11!

C~ t,t8,k!5C~ t2t8,k!, ~C12!

where we have assumedG(t,t8,1,2)5G(t,t8,122) and
C(t,t8,1,2)5C(t,t8,122), i.e., translational invariance,

G~ t,t8,k![E dR G~ t,t8,R!e2 ik–R, ~C13!

C~ t,t8,k![E dR C~ t,t8,R!e2 ik–R. ~C14!

Defining

G̃~t,v,k![E dt eivtG~ t,k!e2k2BN
B

~t,t ! ~C15!

@BN
B(t,t,t8)5BN

B(t,t2t8) is assumed# and

C̃~t,v,k![E dt eivtC~ t,k!e2k2BN
B

~t,t !, ~C16!

then (d is the dimensionality!

^j~p,v!j~p8,v8!&
2pd~v1v8!G0~p,v!G0~p,2v!

5
2

z0
dp,p8112g0

2 2

NE dt dt8E
k

121/d

h0k
2 cosS ppt

N D
3cosS p8pt8

N De2k2BN~t,t8!1

1
B2

2z0

2

NE dtE
k
kk cosS ppt

N D
3cosS p8pt8

N D C̃~t,v,k!

1
2

N

2

z0
G0~p,v!R~p,p8,v!

1
2

N

2

z0
G0~p8,2v!R~p8,p,2v!, ~C17!
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R~p,p8,v!

[
B0

z0
E dt dt8E

k

k2

d
cosS ppt

N DQp8~t,t8!

3e2k2BN~t,t8!12g0
2S p8p

N D 2E dt dt8E
k

121/d

h0k
2

3cosS ppt

N D cosS p8pt8

N De2k2BN~t,t8!

31
B2

2z0
2E dtE

k
i @G̃~t,0,k!

2G̃~t,v,k!#–kkk cosS p8pt

N D cosS ppt

N D . ~C18!

Note that these equations are obtained after higher-order
terms are dropped. Therefore, it does not mean thatj(p,v)
is a Gaussian process.

Define

dLp
~1!52

B0

z0

2

NE dt dt8E
k

k2

d

3cosS ppt

N DQp~t,t8!e2k2BN~t,t8!, ~C19!

dLp
~2!52

g0
2

h0

2

NS pp

N D 2E dt dt8E
k

121/d

k2

3cosS ppt

N D cosS ppt8

N De2k2BN~t,t8!, ~C20!

dLp
~3!~v!52

B2

2z0
2

2

NE dtE
k
cosS ppt

N D cosS ppt8

N D
3 i @G̃~t,0,k!2G̃~t,v,k!#–k

k2

d
. ~C21!

The scalar contraction of the tensor product gives~we take
the p5p8 mode only because of orthogonality of modes!

^j~p,v!–j~p,v8!&5G0~p,v!G0~p,2v!

3^m~p,v!–m~p,v8!&0$12G0~p,v!

3@dLp
~1!1dLp

~2!1dLp
~3!~v!#

2G0~p,2v!@dLp
~1!1dLp

~2!

1dLp
~3!~2v!#%, ~C22!

where ^m(p,v)–m(p,v8)&0 is the value obtained from Eq.
~4.13! by using the zeroth-order solution Eq.~C2!.

Therefore

@G0
21~p,v!1dLp~v!#@G0

21~p,2v!1dLp~2v!#

3^j~p,v!–j~p,v8!&5^m~p,v!–m~p,v8!&0 , ~C23!

dLp~v![dLp
~1!1dLp

~2!1dLp
~3!~v!. ~C24!

The relaxation spectrum is therefore renormalized

Lp→Lp1dLp~v!. ~C25!

We note that the first two correctionsdLp
(1) anddLp
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