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Dynamics of heteropolymers in dilute solution: Effective equation of motion
and relaxation spectrum
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The dynamics of a heteropolymer chain in solution is studied in the limit of long chain length. Using a
functional integral representation, we derive an effective equation of motion, in which the heterogeneity of the
chain manifests itself as a time-dependent excluded-volume effect. At the mean-field level, the heteropolymer
chain is therefore dynamically equivalent to a homopolymer chain with both time-independent and time-
dependent excluded volume effects. The perturbed relaxation spectrum is also calculated. We find that hetero-
geneity also renormalizes the relaxation spectrum. However, we find, to the lowest order in heterogeneity, that
the relaxation spectrum does not exhibit any dynamic freezing at the point when(statikbrium “freez-
ing” transition occurs in heteropolymer. Namely, the breaking of fluctuation-dissipation theorem proposed for
spin-glass dynamics does not have a dynamic effect on the heteropolymer as far as the relaxation spectrum is
concerned. The implication of this result is discus$&1.063-651X%96)03711-1

PACS numbes): 47.10+g

I. INTRODUCTION (—kgT InZ). (1.0

Although systems without quenched randomness usuall¥he mathematical obstacle lies in the difficulty in calculating

provide useful information and serve as the first step in OUthe average of a logarithmic function depending on the ran-

understanding of condensed phases, there are situations dBmness. such as E€L.1). The replica method circumvents
which quenched randomness creates entirely new phenorys;q obsta;cle by using the identity

ena. Flux line pinning in type-Il superconductors, critical to
the practical application of superconductors in high field

magnets, is a manifestation of the embedded quenched im- InZ= lim
purities[1]. In the mixture of *He and“*He, quenched ran- n—0
domness introduced by porous medéag., aeroge)sshifts
the tricritical point and extends the range of superfluid phas

n

(1.2

. . . Shis method has been very useful and successful, though not
[2]. The interesting prqpertle(sa.g., the ons_et of remanence free from controversy. With its success and popularity in
effects below a freezing Eemperat);ref dilute magnets, i giasses, it is not surprising that the study of heteropoly-
modeled by “spin glasses’[3], are consequences of the ersa10ng the line of the above-mentioned analogy often, if
magnetic impurities. These are just a few examples of thgot exclusively, uses this method to draw thermodynamic
new phenomena created by quenched randomness. The stugdhclusions.
of these phenomena constitutes an important part of modern Besides the replica method, there exist other useful theo-
condensed phase physics. retical methods for the study of systems with quenched dis-
Theoretical progress in the study of these systems, esperder[3]. Since we are interested in the dynamics of het-
cially spin-glass systems, also has given impetus to otheeropolymers, among these methods the Langevin dynamic
somewhat distant fields. For example, it is shown that therenethod[3,6] is the most relevant one. This method does not
is an interesting analogy between some models developagse the unphysical replica limit—0 [cf. Eq. (1.2)] to cal-
for spin glasses and the statistical properties of polymersulate thermodynamic quantities. In RE8] it is shown that
with quenched randomnegalized as heterogeneity of the the functional integral formalism developed by Martin, Sig-
polymep [4]. This analogy has attracted much attention ingia, and Rose for classical statistical dynanfi¢kallows an
recent years due to its possible biophysical applications. Aaverage over the quenched randomness without using the
much work has focused on the stattbermodynamiccon-  replica method. It is also shown that this formalism is ca-
sequences of this analogy, we shall discuss in this paper ifsable of giving dynamic information as well as statics.
dynamic consequence. Therefore, although it generally involves more complicated
One of the general methods used to study systems wittechniques, it is worthwhile to study systems with quenched
guenched randomness is the so-called replica meiBgl randomness using this method. In spin glasses there have
Because the randomness is quenched, thermal equilibrium Eeen some studies using this approg&8,9. On the side of
established without thermally equilibrating with the random-heteropolymers, however, to the best of our knowledge, a
ness. Therefore, to calculate the thermodynamic quantitiedynamic study similar to these studies is still lacking. While
for a system with quenched randomness one has to calculatiee static analogy between spin glasses and heteropolymers
the average of the free energy over the distribution of théhas been very useful, a similar dynamic study is necessary if
randomness one wants to use this analogy to address dynamic issues.
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The purpose of this paper is to study the dynamics of aussed. We also give a brief discussion of approximations
single heteropolymer chain, i.e., a dilute heteropolymer soivolved and the limitation of the results. In Appendix A we
lution. It is well known that the dynamic study of polymer provide an alternative derivation of the conventioftairk-
solutions, especially dilute solutions, must take into accounwood approach used in the dynamic study of dilute polymer
the hydrodynamic effect in order to make the prediction ex-solution. Appendix B gives the detailed derivation of the
perimentally relevanitt0—17. Besides the hydrodynamic ef- mean-field approximation sketched in Sec. Ill. In Appendix
fect, the heterogeneity of the polymer chain presumably inC we detail the calculation leading to the result in Sec. IV A.
troduces a further effect. One expects that the dynamics of
the heteropolymer chain will depend on these two effects as Il. MODEL
well as the usual excluded-volume effect. Here we investi-

gate the importance of the heterogeneity to the chain dynam- ) o ] )
ics. Consider a heteropolymer chain with conformation speci-

The dynamics of dilute polymer solution has been extenfi€d by the coordinates dl monomersro, ... ry-;. The
sively studied 10,12 Dynamic quantities such as the diffu- chain can be described by the Hamiltonian
sion constanf13], time correlation function$l14], intrinsic

A. Hamiltonian

viscosity[15], initial decay rate of the dynamical scattering H=Ho+Hg, (213
[16], and relaxation spectruril7] have been calculated. N—1

Among these dynamic quantities we are most interested in H.= z Z(ry—1)? (2.1b
the relaxation spectrum because, in the context of Ref. o 2t v

i.e. protein dynamics, the relaxation spectrum is the most

relevant quantity with potential application to the protein 1

folding problem. In spite of the close analogy between mod- Hr= 5;1. BijU(ri—ry), (2.19
els of spin glasses and heteropolymers at the static [dyel

we find that this analogy is not as complete at the dynamigvhereB;; is a Gaussian random number centereBgwith
level. While there have been attempts to study heteropolymefarianceB? (B>0),

dynamics at the phenomenological level of the hypothetical

dynamics of the random energy mod&8], the present mi- 1 (B;i —Bg)?
croscopic analysis suggests that such an analogy may not be P(Bjj)= > F{ JZT} (2.2
justified when dynamic issues are tackled. Ve

Th f thi i foll N ) . — .
e structure of this paper is as follows. In Sec. Il we In Egs. (2.1) Hg is the Hamiltonian used in the bead-

defi iltoni i i . )
efine the model Hamiltonian and the dynamic equation of pring chain mode{Rouse mod@I[11], where, for conve-

the system. We discuss the physics of the model Hamiltoniaft

and the dynamic equation. Assumptions made are also a(E_lence, all the spring constants have been taken to be unity

dressed. In Sec. lll we derive the mean-field equation o see below. 'I_'he chain cpnnectivity of the polymer is de-
motion for the chain in the limit of long chain length. This scribed by this termbg simulates the excluded-volume ef-

effective equation of motion can be further simplified Whenfem' The_ excluded volu_m_e mterac_tldu(ri—r]-) between
the characteristic time scale of the solvent is much shortef?onomeri and monomey is Gaussian modulated b; .
than the characteristic time scale of the chain. An effective! 'S_Modulation confers the chain heterggeneﬂy. When
Hamiltonian results from this effective equation. It is shown BH(,), the excluded-volume interactions are “monochromati-
that the effective Hamiltonian contains a memory term and@lly” modulated byB, and the chain becomes homoge-
hence a time-dependent excluded-volume interaction. In Sef€0US- At this extreme, the Hamiltonian E@.1) reduces to

IV A we calculate the perturbed relaxation spectrum for thethe usual Edwards Hamiltoniga 2]

chain, to the lowest order in excluded volume interaction, N-1 4 B
hydrodynamic interaction, and heterogeneity. We find that, He= Sra—r2+ =25 U(ri—r- 23
as long as the model Hamiltonian and dynamic equation are E iZO 2 (M=) % (ri=rp. (23

valid, the relaxation spectrum does not depend on the final

equilibrium state of the chain. In other words, in spite of theOn the other hand, a nonvanishiBgmeans that there exist
static analogy between spin glasses and heteropolymers meyarious monomer-monomer interactions and the chain is es-
tioned above, the possible breaking of the fluctuation-sentially heterogeneous. Thisis a measure of chain het-
dissipation theorem, due to the degeneracy of the groungrogeneity and will be called theeterogeneity parameter
states, found in the mean-field dynamics of spin g[@8] By is the usual excluded volume parameter measuring the
does not have a corresponding dynamical effect, at least tgtrength of excluded volume effect. Presumal@ydepends
the order of our calculation, in the mean-field dynamics ofonly on the heterogeneitidispersity of polymer, whileB,
heteropolymer. In Sec. V we discuss the analogy of spiris generally a function of temperature and solvent quality.
glasses and heteropolymers, using the well-known corre- The excluded-volume parametBg will be taken to be
spondence between magnetic systems and self-avoiding rapesitive throughout this paper. A negatiBg gives attractive
dom walks. We will see that, when the kinetic equations aranonomer-monomer interactions, which requires inclusion of
compared, it is clear that the analogy is not very helpfulrepulsive three-body interactions in order to render the
because the dynamic variables used are completely differetiteory stablg¢19,2Q. To simplify the matter, we will confine
and may not be relevant to each other. In Sec. VI the physieurselves to positiveB,, i.e., a heteropolymer chain in a
cal situations to which our model may be applicable are disgood solvent.
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The conventional use of the excluded volume interaction Equation(2.43 is a relaxation dynamic equation, with the
U(r) is the hard-core repulsioA(r) [12,19,2Q. To derive  mode-coupling terng,u, for the chain. Equatiof2.4¢ is the
the effective equation of motion at the mean-field level in alinearized (Stoke$ approximation of the Navier-Stokes
more general form, we will not adopt this convention for equation for the solvent velocity field, augmented by the
U(r) until Sec. IV A, where the perturbed relaxation spec-forces exerted by monomef&2]. We will assume that the
trum is calculated. Before Sec. IV A the only assumption onspatial extension of the system is infinite so that we can
U(r) will be translational invariancdJ(r,r')=U(r—r’)  jgnore the boundary condition. The problem related to the
=U(r'—r). nonapplicability of the Navier-Stokes equation in an un-

Obviously, the Hamiltoniai; ignores the possible varia- ,5,nded space will also be ignorg2B,24. Equations(2.4)
tion of spring constants. Presumably, this variation exists, e yalid as long as the Reynolds number is small.

when the chain is heterogeneous. Since our concern here is | o conventional theory of Brownian motion the effect

the effect of random excluded volume interactions, We.doof surrounding solvent molecules is taken into account by the

not cor_13|der this variation in spring constants. With this Slm'Langevin noises. In polymer dynamics the commonly used
plification, by a properly chosen length scale, we can always

set all spring constants to be unity, as doné2rib. a_pproa_cr(Kirkwood’s .approachis essentially based on this
The statics of the Hamiltoniaf2.1) has been studied in V|e.wp0|nt[10—13..Thls approach treats each monomer as a
Ref. [4], within the context of biopolymer and protein fold- point source of fr|c_t|onal force and amasses the effects of
ing. These works share a number of techniques with spinSClvent molecules in the Langevin noises. However, as ar-
glass models. In the past two decades there has been mugHed by Oond 12,25, this picture is not self-consistent be-
progress in the theories of spin glasses in both statics arfgfuse the monomers are not legitimate Brownian particles,
dynamics[3]. However, there has never been any systemati€ven if the polymer as a whole can be treated like a Brown-

microscopic study on the dynamics of the Hamiltonjart). ian object. In contrast to Kirkwood's approach, the coupled
Langevin equation$2.4) proposed by Oono and Freed ex-
B. Dynamics plicitly introduces the solvent velocity field and associated

fluctuations. In this approach the Langevin noiggsand
have to be reinterpreted as coming from the coarse-
aining procedures used to derive these equations separately
from the more fundamental microscopic equations, and the
9 9H coupling between the polymer and solvent is introduced only
Efi(t)=—§—m+gou(fi(t),t)+ 0i(t), (243  after the respective coarse-graining procedures have been
07 performed. A proper term for these equations is “kinetic
2 equations”[26]. Therefore, we will simply call Eqs(2.4)
(6i(1))=0, (6(t)bp;(t'))=—58(t—t") 51, Oono-Freed kinetic equations
do In the Oono-Freed kinetic equations the energy scale has
(2.4b been chosen dg;T=1. The correlation of Langevin noises
5 g N1 1 chosen her¢Egs.(2.4b and(2.4d)] guarantees that the sys-
v _ _ 20 ) tem will eventually approach the equilibrium state deter-
atu(r,t) voAu(r.t) pOZ‘o ar;(t) 3(r=ri(t) pOVp mined by the statics of the Hamiltonia2.1).
Note that the second term on the right-hand side of Eq.
+&o(r,1), (2.49 (2.49 is the frictional forces exerted by the monomers,
which are point sources of frictional force, as in Kirkwood’s
(&(r,1))=0, approach. In fact, there is a close relationship between these
5 (2.49 two approaches. It has been shown that, to the lowest non-
N\ o o trivial order (i.e., to the lowest order in the excluded-volume
(Go(r.D&(".t'))= 5 Adr=r1s(t=tHl, parameterB, and the hydrodynamic coupling parameter
0o) and within Markovian approximation for solvent veloc-
wherel is a unit tensor. In these equations the kinetic coef4ty field, when the solvent velocity field is projected out, the
ficient £, * and kinematic viscosity, set the time scales for Fokker-Planck equation for the kinetic equatidtys. (2.4)]
polymer and solvent molecules, respectivglyis a measure reduces to the conventional Kirkwood diffusion equation
of the coupling strength between monomers and solvent mo[12,16. A simplified proof of this reduction is given in Ap-
ecules.(We also ignore the possible variation of these coupendix A. These equations are, in this sense, more funda-
plings due to the chain heterogeneitfhe Langevin noise mental than the commonly used Kirkwood diffusion equa-
0,i(t) gives monomerl a random velocity at time. The  tion, upon which most dynamic studies of dilute polymer
noise&y(r,t) is the random acceleration of the solvent veloc-solution are developed. Therefore, a full dynamic study
ity field at positionr and timet. The dynamic viscosityp,  should start from Eq92.4).
is, as usual, related to the solvent dengityby 79= povo. In the same spirit as of the proof in Appendix A, we first
The hydrostatic pressufe ensures the incompressibility of project out the velocity field from the kinetic equation. This
the solven22]. This condition enables us to consider only is done by formally solving Eq2.40,
the transverse component of solvent velocity field. Since no
confusion will be caused, hereafter we will denote the trans-
verse component of solvent velocity by the same synmibol u(r,t)y=ug(r,t)+ug(r,t), (2.539

Starting with the Hamiltonian(2.1), for the dynamic
study, we consider the coupled Langevin equations propose
by Oono and Freef®1]:
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, pling. In polymer dynamics, qguenched randomness has been
uo(r,t)zfe'k"uo(k,t) considered(for example, the mean-field dynamics of di-
k rected polymer in random media studied by Vil§2s]), but
; . the randomness is from external random potential rather than
= f eik‘rj dt’eVokz“")PT(k)[go(k,t’) chemical dispersity. Instead of two-body excluded-volume
k — interactions, the random interactions become one-body and
therefore greatly simplify the issue. Also, equations similar
to Eqg. (2.10 in which the hydrodynamic effect is included
have been studied in the context of homopolymgt2—
14,21,25,28,2p and two-dimensional membranefg30].
ik ke (Y vt These studies, however, consider simpler situations in which
UR(f,t)=fke Uo(k,t)= J;e fﬁwdt e either quenched randomness or the excluded-volume interac-
tion is absent. Equatiofi2.10) considers all three effects:

N—-1
_ Y% _Ho

poi=o ari(t")

Siken(], (2.50

. gON* IHg . ) quenched randomness, hydordynamic coupling, and ex-
XPT(K)-[| == —e k)| (259  cluded volume.
poi=o ari(t")
oA lll. MEAN-FIELD APPROXIMATION
In Egs. (2.5 and(2.59 P'(k) is the transvers¢along the AND THE EFFECTIVE EQUATION
k=k/k direction projection operator OF MOTION
PT(|2)51—|2|2 (2.6) A. Functional-integral representation

The equation of motiofEg. (2.10] is essentially gnon-
linean stochastic differential equation with colored noise
d% [Eq.(2.1D][31]. A standard and convenient method to study
szmma

and

(2.7)  stochastic differential equations is to use the functional inte-
gral formalism[the Martin-Siggia-RoséMSR) formalism]
[7,31-33. The main idea is to write down the probability
functional for the Langevin noises and make a change of
variables from these noises to dynamical variables. The sto-
. chastic differential equation itself is treated as a constraint,
g(r,t)zf ek gk, 1) (2.8)  limiting the evolution of the probability path. By introducing
k auxiliary fields conjugated to the dynamical variables, this
constraint, in the form of & functional, can be written as a
functional integral of these auxiliary fields. This leads to a
< 27 probability functional in terms of the dynamical variables
(E- (KD E (K t))=PT(k) —k?8(k+ k") 8(t—t"), and their conjugated auxiliary fields. The auxiliary-field
Po technique used in this formalism is similar to the technique
(2.9 used in the supersymmetry formalism of stochastic differen-
tial equations, in which the auxiliary fields used are fermion
fields[32,34.

Since the functional integral formalism for stochastic pro-
cesses is already well documented, we do not go into the
details of it. Useful references are Rdf8,32,33. (The con-
dHo IHr cise review in Ref[35] is also helpful. The MSR formalism
- — has been widely used for the dynamic study of condensed

$o ari(1) Lo ori(1) phase systems, for example, liquid-glass transitgs], tur-
+goUr(ri(t),t). (2.10  bulence[36], and spin-glass dynami¢8]. Nevertheless, in

polymer physics it is not often used. This is probably be-
Equation (2.10 is the starting equation of our dynamic cause, in spite of its elegance, no new results have been
study. Note that this equation has two stochastic termsobtained through using this formaligr7,38. The studies in
QoUo(ri(t),t), which contains&y(k,t’), and 6y(t). In other  Refs.[13,14,28,29 make it clear that, for practical calcula-
words, the new Langevin noise is tion, the MSR formalism does not achieve, at this point,
t better (higher-ordey results than the conventional approach
iker(t e Kt ) ST/ , [12,25. The mathematical involvement makes higher-order
00‘(t)+g°jke ()f,mdt e "o IPT(K) - £o(kt') calculations insurmountable. However, for our purposes the
(2.11) MSR method is very useful as it allows us to carry out
guenched averaging in the most natural fqigae below.
Obviously, this new Langevin noise is no longecorrelated Using the MSR formalism, the generating functional for
in time. Eq.(2.10 is

Equation(2.10 is much more complicated than its spin-
glass counterparf3,8,9 because of the presence of the _ A LotL
excluded-volume interactions and the hydrodynamic cou- ZR@ofo_f {Pri(OHDr(OPArpe ™ s, (3.

(d is the spatial dimensionality The Fourier-transformed
random acceleration

is Gaussian and is correlated according to

where L denotes the transverse componest (k,t)
=PT(k)-&Kt).

Substituting the solutiofR.5) into Eq.(2.43, the equation
of motion for the chain becomes

J
Eri(t): + goUo(ri(t),t)+ G (t) —
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N—-1
1 odH, 1
Lo f dt >, w(t){ O+ =5 La=2, 7B (37
The average oveB;; can be easily done and gives
_goUo(ri(t),t)_aoi(t)}a (3.2 !
N-1 M Zeog():f{Dri(t)}{DFi(t)}eL0<eLR)B
Lr= J_ th iri(t)- L an gOuR(ri(t),t)}-

(3.3 :f {Dri(t){Dri(t)}e"0

Note that the Langevin noisdl and&, are now inL,, while Bo
the quenched heterogeneity, representedBy is in Lg. (2)2#] 05+ O;j Oij |- (3.8

Since 6, &, andB;; are not coupled, we can take the aver-
age onRﬁogo over these random quantities separately.

The Jacobiard({r;}) in Eq. (3.1) is associated with the
change of variables from Langevin noises to dynamical vari- The generating functional obtained in Sec. Ill A can be
ables(mentioned above Because of the following two rea- used to derive an effective equation of motion in the limit of
sons, we will drop the Jacobian from our calculation fromlong chain lengtiN—c. The same method is used to derive
now on. First, the specific form of this Jacobian depends omn effective equation of motion for spin glas$89] and for
the time-discretization scheme used when the functional indirected polymer$27]. Although the algebra involved here
tegral representation is written dow®9]. (For the Stra- is more complicated, the resulting effective equation of mo-
tonovich scheme Ref$40,41] work out the detailed form. tion shares the same characteristics as the effective equation
Although it is not uniquely defined, one can get the correctof motion obtained in Ref438,9].
result provided one consistently uses the same discretization The detailed calculation in the long chain limit can be
scheme[42]. Second, and more importantly, the Jacobianfound in Appendix B. The result is an effective Lagrangian
depends on the dynamical variabfeg , not on the auxiliary
variables{r;}. As we can see from Eq$3.2 and(3.3), the
equation of motion[Eq. (2.10] is always coupled to the
auxiliary fields{r;}. This will still be true for the effective — —
equation of motion that we seek. Therefore, whatever form  +(B(t,t",2,4)A(t,t’,1,3
the Jacobian has or whether it also gets averaged when we -, ., -
perform averages ovd;; , 6y, and&; is not important. We +2(C(1t",1,3)D(t,t',2,49]U(1-2)U(3~4)

B. Mean-field approximation

B2 — —
Le=Lo+ ?J dt dt'd1d2d3d4[(A(t,t’,1,3)B(t,t',2,4
0

Ij’

do not need it anyway. 2B, — —

In (3.1) only the auxiliary fields{r;} are introduced. In +—f dt dt'd1d2d3d4[{C(t,t’,1,3)B(t,t',2,4
principle, for the Oono-Freed kinetic equatié®.4), there $o
should also be auxiliary fieldsl}, as in Refs[13,14,28,2% +(B(t,t',2,4)C(1,t",1,3]8t—t")U(1-2), (3.9

Since we are not interested in the solvent velocity fialds
and have eliminated it from the kinetic equation, there is nawhere, for convenienc®,,R,,R3,R, are written as 1,2,3,4,

need to introduce an auxiliary variablefor u. respectively. The quantities,B,C,D are(see Appendix B
For computational convenience we define three operators

AL, R,R)= ai(t)ay(t)s(ri(t) —R)S(r (t') ~R"),

2
T (tt)= %gof e VoA (=t gik-[r(H) =r;(t")] PT(K)
Po Jk (3.109

(3.4
(a symmetric tensor B(t,t',R,R")=>, &(r;(t)~R)&(r;(t')—R’), (3.100

1 N—-1
t)y==| dt’ it (t")-[15; 8(t—t' —e)O(t—t’ —
) 2f 2, Tt 11, o) C(Lt,RR)=2 a(1)a(ri(1) —R)&(ri(t') ~R’), (3.100

+i (D) et =) ]-Vi(t) (3.9

(a scalar differential operatoe, being infinitesimal and posi- D_(t,t’,R,R’)EE a;(t") 8(ri(t)—R)&(ri(t")—R’). (3.100
tive), and !

OijEj dtfa (U (ri(t) —r;(1)+a;(HU(rj(t) —ri(t))] Note thatB is the dynamic version of the order parameter
(3.6 used in Ref[4]. In spin-glass dynamics it is also found that
the static Edwards-Anderson order parameter should be gen-
(symmetric ini andj). Now we can rewriteLr in a more eralized to a time-dependent order parameter whose long-
compact form time limit gives the static order parame{&;43]. Similarly,
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the static order parameter used in Héfl can be defined as of the self-consistent average bracket, the te¢@sD and

the long-time(equilibrium) limit of this dynamic order pa- (B)C are associated with the deterministic part.

rameterB. The physical meaning of the static order param- We then take the average ow@yandé,. Because of their

eter is explained in Ref4]. We will explain later the physi- Gaussian character, these averages are easy to carry out.
cal meaning of the dynamical order parameger Note that these averages give
__A little reflection tells us that, first, the terr{#\)B and

C)B will not appear in the final effective equation of mo- . a

§ior>1 because tr?ef)y are related to the Jacobci]an when Writin% exp( J dtZ (0L~ 00i(t)]>
the functional integral representation for the effective equa-

tion of motion. As explained earlier, the Jacobian does not

. . . 1 R . ,
play an important role as far as the effective equation of ZEXF{EJ dt dt'Ei 2 I71(1)+( Bi (1) By (1)) i (1)

bo

motion is concerned. Hence we can ignore these terms. Sec-

ond, the term(B)A is related to the stochastic part of the

effective equation of motion because it contains two auxil- (3.1
iary fields outside of the self-consistent average bracket

( ). Finally, because there is only one auxiliary field outsideand

<eXF“ a2 ‘fi(‘)'( —goJthxd"e”OKZ“”PTU?)-go(k,t')eik~ri<t>)D

2 _ _
:eXp{E Y J at dt’iﬂ(t)'[% dt—dﬂ J O(t- DOt —U)e ot Dgrok ' ~gikr(tgik”rt)
T kJ Kk’

)

><<§é<k,t_>§é<k',t_'>>]ifj<t'>’ (3.12

in (expLo)g,¢, and contribute additional terms to the random e [ v
part of the effective equation of motion, which is the term Jo= Jke J_wdt e’

(B)A in Eq. (3.9). Bearing this in mind, we can easily write
down the effective equation of motion.

N—-1

T 1 . ' _% (?HO
X PT(k) [f(k,t )= e T

—ikeri(t))

(3.19

C. Effective equation of motion and Markov approximation

1. Effective equation of motion is a vector field similar to the original solvent velocity field
Eqg. (2.5b. The renormalized Langevin noises are still

It is a simple matter to read off the effective equation of Gaussian, with variances
motion after the average over Langevin noises is taken. We

can explicitly write down the expression f¢B)A in Eq. , ’ B2
(3.9) and attribute terms involving the tensiy to the renor- (6(1)0;,(1"))=(00i(1) Oy (t )>+2_§‘73 (3.19

malized noise and the rest of the terms to the renormalized
noise 6. [See Eqgs(3.15 and (3.16 below. Because the
algebra is straightforward and slightly long, we will not write and
down the details here. The result is
B’gj
(' (KDE (K1) =(& KD &K ) +——=Ts.
dHg 2B2 2p6

2B,
g—oergojo— _gjl_ —T>t 6(1), (3.16

i t
U= Z
(3.13
In these equations, for convenience, we have defined vecto-
rial quantities.7; and 7, and tensorial quantities/; and

where Ja- Their expressions are
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1 — velocity field is projected out. As we mentioned in Sec. Il,
jl:if dt’d1d2(D(t,t',1,2)Vi()U(r;i(t)— 1) our concern here is the equation of motion of the chain.
Therefore, we will make no attempt to derive an effective
1 _ — Oono-Freed kinetic equation for the solvent velocity field.
XU(ri(t')—2)+ 52 f dt’dt d1d2(D(t',t,1,2)) Following the conventional interpretation of the MSR for-
' malism[7,33], time correlation functions of dynamical vari-
X O(t—t")Ljj(t,t")-V;(tHU(ry(t") — DU (ry(t) — 2), ables{r;} and their auxiliary field§r;} are response Iunc-
(3.17 tions of the system to the perturbation associated yith
' Causality requires that these response functions should be
vanishing if any of the time variables of the auxiliary fields
jzzlf d1i d2(B_(t,t,1,2)>Vi(t)U(ri(t)—1) {Fi}- is larger than gll thg time va-lriableslof the dynamical
2 variables{r;}. Imposing this causality requirement upon Egs.
(3.10, it can be shown that causality indeed holds in the

T %2 f dt’d1 d2<B_(t’,t’,1,2)> effective equation of motion Eq3.13).
i

X B(t—t) Ty (L) -V,(tHU (1)~ 1), (3.18 | 2 Mark.ov approximation | . |
The essential ingredients of the proof given in Appendix
_ A are (i) elimination of the solvent velocity field and) the
Tz= 5ijf d1d2(B(t,t’,1,2)V;(t)V;(t") Markov approximation. Physically(i) means an average
over the solvent velocity an@i) means that the characteris-

_ tic time scale for solvent dynamics is much shorter than the
X U(ri(t)—l)U(ri(t’)—2)+2f dt d1 d2 characteristic time scale for the motion of the chain.
_ . o We adopt the same spirit of Appendix A. As the velocity
X(B(t,t",1,2)) o(t—t)I;(t,t) - V(1) V;(t") field has been eliminated, we now apply the Markov ap-
— , proximation to further simplify the effective equation of mo-
XU(rj() —DU(ri(t")—2) tion. The Markov approximation is

=5ijf d1d2(B(t,t',1,2) V(1) Vi(t') iy 2 ,

XUr(t)—DU(ri(t")—2)
o Within this approximation, the Oseen tensor
+2j dt d1 d2(B(t,t,1,2)

_ . T(rr')zf 1 PT(k)elk (=) (3.22
X O(t" OV, (DT} (t 1)-Vi(1) ’ K70k '

XU (@) - DU(ri(H) -2), (319 appears, for example,

»74:2 f d1 d2<B_(t,tr,1,2)>efik-rj(t)efik’-rj(t’) Fij(t,t/):29%505“_t')T(ri(t),rj(t))- (3.23

- - Using the Markov approximation we can largely simplify the
XPT(K)-V;(t)PT(k")-V;(t)U(r;(t) = 1U(r;(t')—2).  effective equation of motion.
(3.20 Since we seek the result only to the lowest nontrivial or-
der, that is, to the lowest order B, gy, and By, we can

(We have suppressed all the possible dependence of the$@nPIfy the expressions of by dropping all the higher-order

J's on time, monomer index, and so pn. terms. For convenience, we define

Note that, although Eq3.14) is essentially the same as
Eq. (2.5b), it would be incorrect to write a separate Navier- S(R.t)= Sri(t —R 32
Stokes equation, similar to Eq.49, for Jp, in which the PR El n®=-R), (3.2

full Hamiltonian is replaced by, and claim that when the

average over the quenched randomness is performed the ef- R

fective equation of motion for solvent velocity is not G(t,t’,1,2)5<2 5(fi(t)—1)iri(t')5(ri(t')—2)>,
changed. Recall that we have eliminated the solvent velocity ! (3.25
field before the average is performed. In principle, one can '
explicitly introduce an auxiliary field for the solvent velocity
and perform the average over the quenched randomness to C(t,t’,1,2)z<2 5(ri(t)—1)5(ri(t’)—2)>, (3.26

find effective equations of motion for both the polymer con- i

formation and solvent velocity. The effective equation of

motion for the solvent velocity field is presumably different where the angular brackets are the self-consistent mean-field
from the original Navier-Stokes equation, though we expectiverage defined by E@B13) in Appendix B. The mean-field
that we would get the same equation as 313 once the kinetic equation(3.13 then reduces to
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d 1 d 1
an0="7 5 (t) g6 T ) o (t) + mi(0), (0= 7 oy 92 T () - (t) +HE(),
(3.2 (3.30

where the new Langevin noige is Gaussian with variance 2
(B (Op(t)) =7 8(t-1) 51

2
(D@ (t))y=—08(t—1")5;1+2g26(t—t")T(r;(1),R
(e (D (1) o (=19 61+ 2gga(t=t)T(i(0. Ry(1) +20g58(t—t)T(ri(t),r;(t), (3.3)

2
Bz(i]f d1d2C(t,t’,1,2 whereHg is the Edwards Hamiltonia(.3). This equation
25 reveals that the lowest-order approximationpgRR,t) must
e NS be the usual monomer density. Any higher-order correction,
U @ri(H) —1) JU(ri(t ,) 2) (3.28 after being multiplied byB,, must be of first or higher order
ari(t) ari(t’) in Bo, g2/ 77, of B2/ £o. To the order of our calculation, these
. I corrections can be dropped. Therefore, we can replace
The effective HamiltoniarH 4 becomes p(R,t) by its corresponding unbracketed quantity
He=Ho+B dlp(r,tH)U(ri(t)—1 —
oo OZ‘ f pr UL —1) p(Fe,t)EEi 8(ri(H) — R). (332
> dt’ did2 Taking into account the symmetry of monomer indices,
which should be restored when the self-consistent bracket is
AU(ri(t)—2) removed, the effective Hamiltoniai3.29 becomes
XG(tt',1,2 ——————U(r(t)— 1),
c?ri(t ) BO
(3.29 Her=Ho+ ?; U(ri(t) —r;(t))

wheret™ =t— e, € being infinitesimal and positive.

These equations have the form of the nonlinear general-
ized Langevin equatiof44,45. However, the reason for the
emergence of this nonlinear generalized Langevin equation
is different from that in Refd.44,45. It is from the elimina- u(ry(t)—1).
tion of the heterogeneity of the original system rather than
from the elimination of the degrees of freedom of surround- (3.33
ing “bath” molecules. Here the elimination of the surround-
ing bath molecules does not cause any memory effect beSince there is no corresponding known resultige=0 and
cause the Markov approximation is used. B+#0 (a heteropolymer chain in thé solution, we cannot

In generalized hydrodynamics one can define frequencyfind a lowest order approximation fa& using the same
and wavelength-dependent transport coeffici¢a@. Simi-  method.
larly, in Eq. (3.29, the term containing the heterogeneity = The quantityG(t,t’,R;,R,) in Eq. (3.33 gives the re-
parameterB can be seen as giving a time-dependentsponse field of the chain at tirte when the chain confor-
excluded-volume interaction. Alternatively, since this term ismation is §(r;(t)—R;), to a perturbation introduced by
nonlocal in time, one can say that the heterogeneity introf;(t’) at time t’ when the chain conformation was
duces an excluded-volume interaction along the world lined(r;(t") —R,). (The perturbation can be explicitly introduced
in addition to the usual excluded-volume interactiBg  in the kinetic equation, in the same way as the perturbative
along the chain contour. magnetic field used if8,9]. For simplicity it is not included

Inspecting these equations, we find that they are similafere) Causality again is respected and the integrat’oin
albeit more complicated, to the effective kinetic equation obthe effective Hamiltonian is limited by the current tirhe
tained in spin-glass dynami€8,9]. In these works a memory The quantityC(t,t’,R4,R5) in the correlation function of
function also appears in the mean-field limit. In principle, the renormalized noisg; [Eq. (3.28] gives the correlation
one can expand the monomer-monomer interactibrin  function of chain conformations, between conformation
terms of dynamical variables(t). This expansion will lead &(r;(t) —R;) at timet and &(r;(t') —R,) at timet’. Thisis a
to a generalization of th@-spin-interaction spin-glass dy- natural dynamical generalization of the static order param-
namics discussed in Reff9]. However, since one will get eter proposed in Ref4].
infinite p-spin-interaction terms, this approach does not seem The effective Hamiltonian is time dependent. The
to be practically feasible. memory function G{(;t’) makes the chain conformation at

We can now take the known result for homopolymer as @ime t depend on all the past chain conformations. This
reference. When we set the chain heterogenBityqual to  memory term makes the kinetic equation non-Markovian and
zero, Eq.(3.27) is expected to reduce to the same equationwriting a Fokker-Planck equation for it is impossible. It is
obtained from eliminating the solvent velocity field in the well known that a non-Markovian process can be made Mar-
Oono-Freed kinetic equatiaisee Appendix A kovian by introducing new degrees of freeddeng., the ex-

dt’ | di1d2
2§oi f f

JU(ri(t')—2)

XG(t' 12—
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ample in Ref.[47]). However, in our case, this would be 2
equivalent to returning to the original Oono-Freed kinetic <M(T-t)ﬂ(7".t')>=§—15(t—t')5(7'— ')
equations where the process was Markovian, because what 0

has been done is exactly the elimination of some degrees of +29§6(t—t’)T(c(r,t)—c(r’,t’))
freedom(heterogeneity and solvenrom the original Mar- )
kovian process. Of course, a Fokker-Planck-like equation B , ,

. . ' , ) +-—=d6(r—7") | d1d2C(t,t',1,2
can be written for a generalized Langevin equation such as 2{5

Egs.(3.27) and(3.33), but this would not give a closed equa-

tion. Instead, it gives an equation with infinite terfesg., a U (e(r,h—1) U (e(r,t') ~2)

Kramers-Moyal expansior31]. c(7,t) o'ty
On the other hand, a Fokker-Planck equation with 4.2
memory effect has been developed by ZwarZ§]. It is
also shown in Ref[48] that, after certain approximations, B2 o,
. . Hey=Hg— == d7=| dt’ | d1d2
the memory Fokker-Planck equation can be transformed into 2%, e

a generalized Langevin equation. This seems to allow us to
transform the generalized Langevin equation obtained here KG(t' 1 2).5U(C(T,t')—2)
back to a memory Fokker-Planck equation. However, it is o oc(r,t')
not clear how to perform this backward transformation.
These considerations make it clear that trying to write
down a generalizedmemory Kirkwood diffusion equation 1 9 2 B,
for the mean-field equation of motion E€8.27) would be HE=§f dr| ——c(nt)| + ?J' dr d7'U(c(7,t) —c(7',1)),
very difficult, if not impossible. Fortunately, although the (4.4)
relaxation spectrum is calculated in R¢L7] by perturba-
tively solving the Kirkwood diffusion equation, one can also =
derive the relaxation times directly from the kinetic equation. G(t:t",1,2)= f dr(s(c(7,t) = 1)ic(r,t')é(c(',1) = 2)),
As it is clear from the above analysis, we should not try to (4.5
find the corresponding generalized Kirkwood diffusion equa-
tion but rather derive the relaxation spectrum directly from
the kinetic equation. This is done in the next section.

U(ce(r,t)—1),

4.3

C(t,t',1,2= f dr(5(c(7,t)—1)8(c(7',1)—2)),

(4.9
1 T/ 1\ aik t)—c(r' t
Te(nt)—o(r' t)= | —5P(kjekleroa0,
k770K
IV. MODE RELAXATION SPECTRUM 4.7
A. Transition to continuous model From now on the potential (c(7,t)—c(7',t)) will be

For convenience, we now rewrite the effective equation ofékén as a hard-core repulsive interactiod(c(7,t)
motion in terms of continuous chain notation. We will use —¢(7',t)) so that we can compare our result with Réfz].
the standard notatiofil2,19, = being the contour length FOr @ general potential the corresponding equations can, in
measured along the chain ag(,t) the position of the point ~Principle, be similarly written down. o
at 7. A short-distance cutofé will be implicitly assumed in Equation(4.1) essentially describes a nonequilibrium pro-
the following equations so thdtr— 7'|>a for all double cess._ln spin-glass dypamu:s, as mentioned above, a similar
integrals overr and . The upper limit of contour length €duation can be obtained through the same mean-field ap-
can beN—1, according to Eq(2.1), or N, becauseN has proan_at|on[3,9]. In Refs._[8,9], it is assumed that the pro-
been taken to be very large in the mean-field approximatiorC€SS_iS stationary. While the newly developed out-of-
We will useN as the upper limit of the contour length so that €duilibrium dynamics of spin glassg¢9] is potentially able
one can readily compare our result with the result of Refl0 address nonstationary dynamics, we will assume that in

[17]. our case the process is stationary. This assumption gives
The effective equation of motion in continuous chain no- G(tt',1,2=G(t—t',1,2), 4.9
tation is
C(t,t',1,2=C(t—-t',1,2. 4.9
9 1 Her ,
EC(T,I)— - Zo (.0 —gof d7' T(c(7,t)
OH o5 B. Perturbation calculation
—c(7',1))- — + 1), 4.7) . .
(1) oc(7',t) p(m) @D The conventional method used to determine the spectrum

of mode relaxation, especially the longest relaxation time, is
to find the eigenvalues and eigenfunctions for the Fokker-
where Planck operatof17]. This approach is useful as long as a
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Fokker-Planck equation exists. However, as we have ana- Introducing the Rouse coordinatéép,t),
lyzed in the preceding section, this is not the case here.

Nevertheless, since what we want to find is the longest _ \/E N pmT
relaxation time, we can simply use perturbation method to &p.)= Nfo d7 c(7.t)co N )’ (4.10
find out how the kinetic coefficient is renormalized, with the
same spirit of Refs[50,51. In principle, it is possible to and its Fourier transform
develop a diagrammatic method, similar to the diagrammat-
ics developed in Ref52], to systematically calculate desired _ it
guantities. However, this would not make much sense be- §(p,w)=fimdt &(p.e™, .19
cause Eq(4.1) is valid only to the lowest nontrivial order. A
straightforward perturbation calculation will be sufficient. the equation of motion becomes

|

-1 BO 2 ’ i ot; pm7 i 2 —iwt’ AN ’
Gy (p,w)&(p,w)=—— —j drdr dtfe‘“lkco ——lexgi\/ck-X f e "UEp w0 )Qp(T,)
go N k N N o’ o'
’ 2 ’ ’
o p'm 1 pmT p'mr
— ot ~
gONJ drd7’ dtj w% e N 77Okz\,os( N )cos( N )
i 2 —iw"t AN ’
Xexq i Nkz,, e P, 0")Qpi(T,7")

’ i ot —ik’ R,
Zgo[fdtdfdldzf dtff G(t,t’ 12)|k|kcos< )

PT(k)-&(p’,0")e "

2 e "mT .
Xex;{i \ﬁk' 2| Hpw"e co{—p e kR
N " " N
. ]2 o p' 7T
xXexp i Nk~2 f &p',o')e '@tco N + u(p,w) (4.12
p' Je
and
p mT
<u<p.w)u<p',w’>>:——1f dt dr el >‘co{ s( )
2_, p7T7' p
+ NZgOJ dt dr dr' i@t teo ~N T(c(r,t)—c(r’,t))
Bzfd dr dt'e e’ 'cod P77 | cof P fdldzc '1,2
+N2_§(2) t dr dt'e'“'e coTco N (t,t',1,2
88(c(7,t)—1) 86(c(7,t')—2
(c(7,t)—1) os(c(T ) ), 4.13
oc(7,t) oc(T,t")
|
where we have defined Since we need to carry out calculations only to the lowest
nontrivial order, we can iterate these equations once and
([ dw drop all the higher-order terms. The detailed calculation can
= | ox (4.14 be found in Appendix C. It is shown in Appendix C that the

relaxation spectrum , is renormalized by three terms at the
lowest nontrivial order,

k? pmT
L _ 2= .
oAy = dr d7’ J’ dCOE( N )

pmr pmr’ )
Qp(7,7")=co N CO{ NIE (4.16 X Qp(T, e K Bn(mT), (4.17

Gol(p.w)=—iw+A,, A,=
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92 2(pm\? 1-1/d pmwT perature. Since the time-persistent part of the response func-
SAP=—— N(W) f rd7’ f —& cos( N ) tion is directly related to the degeneracy of the ground states,
70 K this result implies that this degeneracy is dynamically unob-
pmr’ ) ) servable, at least to the lowest nontrivial order. This in turn
><cos< ) ~KBn(n ) (4.18  may mean that barriers between low-energy states are non-
extensive(in N) in the studied model of heteropolymer.
B2 2 . a7 One may argue that the violation of the FDT happens only
P YA T kco N 1% N when the.system is |nf|n|tel_y Iqrgbl—oo and, since only
0 largeN is imposed in the derivation of the effective equation
_ - k2 of motion, breaking of the FDT does not happen and the
><i[G(T,O,k)—G(T,—w,k)]-ka. (4.19  above argument is not quite right. Nevertheless, what really

matters is that the tern®(,0,k) — G(7,— w,k) makes all

Compared to the result obtained in REE7], Egs.(4.17)  static (zero-frequency effects dynamically null and corre-
and(4.18, renormalizations due to the excluded-volume in-sponding static freezing phenomena may not have their dy-
teraction and hydrodynamic interaction, respectively, coinfhamic counterparts in this system.
cide with the results reported there. The additional renormal- Carefully checking the calculation that leads to the term
ization due to the chain heterogeneity paramé&es given  G(7,0k)—G(7,— w,Kk) in Eq.(4.19, we see that it is rooted
by 5A§,3). It is found in Ref.[17] that the renormalizations in the two exponential functions in tH&-dependent term in
from excluded-volume and hydrodynamic effects are indeEq. (4.12. This makes it clear that the chain flexibility is
pendent of each other, at the lowest nontrivial order. Here weesponsible for the dynamically null result. Physically, this is
see that the addition of heterogeneity preserves this indepea-plausible result. The quenched randomness in(Ed) is
dence: All three effects are not coupled at the lowest nonguenched along the chain, but not in the space in which the
trivial order. heteropolymer is embedded. As we do not expect a dilute

It has been shown that in spin glasses there exists a critliquid mixture of magnetic and nonmagnetic particles dis-
cal temperature below which the replica symmetric solutiomplaying any “frozen in” behavior observed in its solid mix-
is not stablg 3]. Below this transition temperature, there areture counterpart, e.g., spin glasses, we do not expect a full
infinite ground states so that the system displays nonergodipin-glass-like behavior in heteropolymers because the ran-
behavior. This nonergodic behavior is responsible for manydomness is not fully quenched in space. We can say that the
characteristics of the spin glasses below the transition teneorrespondence between spin glasses and heteropolymers is
perature[3]. It is proposed in Ref[8] that, in an infinite  more statically than dynamically complete. The analogy be-
system, the fluctuation-dissipation theoré®DT) should be tween spin glasses and biopolymers therefore has to be used
violated below the spin-glass transition temperatdig with some care, especially in buildired hoc phenomeno-
Mathematically, the violation comes from the extra time-logical models not supported by microscopic analysis.
persistent term in the correlation and response functions.
Physically, the breaking of the FDT is caused by the noner- V. ANALOGY BETWEEN SPIN GLASSES
godic behavior of the system. The response function contains AND HETEROPOLYMERS
not only the usual response obeying the FDT but also a time- )
persistent part corresponding to the crossing of the energy It is well known that there exists an elegant correspon-
barriers between the ground states. Refer¢@talso shows dence between magnetic systems and self-avoiding random
that the breaking of the FDT is needed in order to make th&valks, e.g., a polymer chain with excluded-volume effect.
static mean-field solution of the Sherrington-Kirkpatrick This correspondence can be shown perturbatively and ana-
(SK) model stable. lytically [20,54,55._Fr0m the point of view of this complete _

It is clear that this dynamical consequerice., breaking ~correspondence, it seems that the analogy between spin
of the FDT) is closely related to the static propertpany glasses and.heteropolymers should_ be also com_plete. H_ow-
ground statesof the SK model of spin glasses. Referefiép ~ ever, according the result obta!ned in the preceding section,
shows that a freezing transition can occur in heteropolymer§ne has to be careful when using this analogy. Therefore, it
at which only few conformationgstate$ dominate in the IS necessary to think more about f[hls analo_gy in thg context
partition function. One might expect some dynamic conse®f th_e correspondence. We now give a qualitative discussion
quences, and in fact it was suggesfie] that static freezing ©f this analogy. _
in heteropolymers is accompanied by that dynamic freezing. There are different ways to establish the correspondence
This assertion was made based on the phenomenologicagtween magnetic systems and self-avoiding random walks
analysis that extends the random energy model to kinetic$20]- Here we will follow the analytical proof given in Ref.
The model used ifi18] employs an unphysical assumption [55]. Using t_he result obtained in R¢b5], we k_now that the_
that two states connected by one kinetic step have statistlodel considered here corresponds to an Ising model with a
cally independent energies; it is this assumption that leads tgonrandom nearest-neighbor interaction and a random four-
the conclusion about the glass transition in this systg&). ~ SPin coupling. More precisely, Eq$2.1) can be obtained
Our microscopic analysis, Eg4.19 shows that, within the ~from then=0 limit of the soft-spin Hamiltonian
order of our calculations whether or not the FDT is broken, nN N n n 2
dynamically, there is no effect at_all. This_ is because the H=E E JijUiananz rz Uiz +ﬁ Z Uiz ) }
G(7,0,k) term exactly cancels the time-persistent part of the @ 1] i x ¢ 2\9F
response field if the temperature is below the transition tem- (5.1
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wherer serves as a variable for the Laplace transf¢gim tional integral formalism plus mean-field approximation.
order to obtain the partition function of the walland its  Having these common features still allows entirely different
value need not be specified in our discussion. Further detaighysics. As we argued at the end of Sec. IV A, our system is

of this correspondence can be found &5]. somewhat intermediate between the solid and molten phases
Comparing this Hamiltonian with the one considered inof dilute magnets and is perhaps more similar to the
spin-glass dynamici3], in terms of soft spin 3He-*He mixture in porous media than spin glasses.

1 VI. CONCLUSION
H=§2 (fo5ij—233ij)0iﬂj+uz ol =2 hioy, . . . . .
(i) i i The main result of this paper is the effective equations of
(5.2 motion (3.13 and (3.27 and the renormalized relaxation
spectrum. We first ask how adaptive our model is. In poly-
er dynamics much work has been done on homopolymers.
As a first order approximation, if the heterogeneity of the
chain is not important, the homopolymer is a reasonable
model. It is seen in the above calculation that the lowest-
order effect of the heterogeneity parameieis proportional
to B2. This implies that the effect of heterogeneity is small
N and probably ignorable. On the other hand, to proceed fur-
H=— > 3y iy ‘Uip_z ho; (5.3  therto next order approximation, one cannot ignore the es-
i=1 sential difference between homopolymers and heteropoly-
mers. Furthermore, it is also known that the naturally
or, in terms of soft spin, occurring heteropolymers such as proteins are composed of
at most 20 types of monomefamino acidg In this sense
H=3
|

we see that the main difference is where the randomne
enters. Equatiort5.2) has the quenched randomnegsbe-
ing a two-spin coupling, while the random couplilgg; in
Eq. (5.1 is in a four-spin term. Note that the Hamiltonian
(5.1) is also different from thep-spin-interaction spin glass
studied in Ref[9],

i1<iz - -<ip

N
the approximation of independent interaction enerdies
—B JigigTiy ~crip—,8i221 hio. emplo@%d in this paper may be reasonable: It was sg[?}/n
(5.4) that the greater the number of monomer types, the better the
approximation of independei; .
Although Eq.(5.4) appears to be very similar to E¢p.1), Furthermore, in a recent simulatigs8g], it was shown
the O(n)-symmetry-preserving termB;; in Eq. (5.1) makes that in the early stage of the collapse of the homopolymer,
the story entirely different. It is unclear, and seems unlikely,from a coil state to a globule state, some clusters form along
that the(qualitativg dynamic features obtained in Ref8,9]  the chain. One way to see this process is to view the chain
have their counterparts in the dynamics of Eg}). In fact,  with clusters of various sizes as an effective heteropolymer
we are not aware of any study of E§.1) itself as a possible chain formed by monomers and clusters. This is plausible if
spin-glass model. one uses a coarse-grained viewpoint. One may argue that
[Perhaps the’He-*He-aerogel system mentioned in the these clusters are not stable; they constantly form and anni-
Introduction is more relevant to the heteropolymer solutionhilate. However, on average and in a coarse-grained sense,
than the spin-glass system. We argued in Sec. IV that thehis constant birth and death of clusters probably can be ig-
randomness in heteropolymer solution is not completelyhored because the clusters seldom grow larger than a certain
quenched in space. In thiHe-*He-aerogel system, accord- scale, as the simulation shows. We may take the upper length
ing to the picture proposed by Chan and co-work@is at  scale of these clusters as a basic length scale in the model
low “He concentrationfHe atoms can be seen as “partially and treat the clusters as heterogeneous monomers. These
guenched”: Some are bound onto the aerogel, which is comelusters may have different sizes and masses, which are also
pletely quenched, while some are in a freely moving superallowed in our model because sizes and masses of monomers
fluid phase. This interplay of quenched randomness and amlo not appear in the Oono-Freed kinetic equation. In this
nealed randomness has been theoretically studied by Maritaense, our model can also serve as a model for a homopoly-
et al.[56] using the so-called Blume-Emery-GriffitiBEG) mer chain in a poor solvent during its early stdgefore the
Hamiltonian [57]. Interestingly, the similarity between the three-body interactions become imporjaot collapse.
BEG Hamiltonian[56,57 and Eq.(5.1) seems closer than Ideally, similar to Ref[17], the next calculation would be
that between Eqg5.2) and(5.4).] applying the renormalization-group technique to find the
The above observation is only at the level of the Hamil-scaling form of the relaxation spectrum. This does not seem
tonian used in each model. In fact, a more significant differpromising, however. To perform this calculation, we need an
ence at the level of kinetic equation exists. In the Oono-ansatz for thew dependence of G{,k), analogous to the
Freed kinetic equation(2.4) the dynamical variables are one used in spin-glass dynami&], as well as an ansatz for
monomer positiongr;} and the solvent velocity field. On  its k dependence. Nevertheless, we do not expect that the
the other hand, the dynamical variables used in R&®€| renormalization-group calculation, even if it is possible, will
are spin componentso;}. Whenn—0, spins{o;} do not change the conclusion regarding the dynamically null effect
become monomer position;} and the solvent velocity of the time-persistent part of response function, reached in
field u. Although the effective equation of motion does shareSec. IV B.
some common featurdg.g., memory effect and renormal-  The most important development of the present model
ized noisg, with the ones found in the spin-glass study, thesewvould be to incorporate chain compaction, i.e., consider the
are the features common to the machinery, namely, funcdynamics of the heteropolymer globule. Another relevant

o
?O'iz-f- LIO'i4
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and important aspect of polymer dynamics that may be stud-
ied along these lines is the kinetics of coil-globule transitions P({f ho= 2 E — [§ 115
[59] which may be relevant also for protein folding.

P
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where P({r;},t) is the probability distribution function of

chain conformatior{r;}. Equation(A7) is exactly the Kirk-
APPENDIX A: DERIVATION OF THE KIRKWOOD wood diffusion equation.

DIFFUSION EQUATION

We show here that the Kirkwood diffusion equation can ~ APPENDIX B: DERIVATION OF THE EFFECTIVE
be derived directly without the projection technique used in LAGRANGIAN
Refs. [12,16. If the Hamiltonian is the Edwards Hamil-
tonian, the equation of motion derived from E¢2.4) will
be[cf. Eq.(2.10]

Here we detail the calculation.

1. E,ij(’) term

J 1 oHg Define
Eri(t): Zo (D +goUg (ri(1), 1)+ Gy (1)

A(t,t',R,R)= 2 t)a;(t") 8(r;(t)—R)S(r;(t")—R’),

+gouR(ri(t),t), (A1)
. _
ug<r,t>=feik~rj dt’ e~ okt B(L,U,RR)=2 a(r(H)~R)I(ri(t) ~R"),
k —
" (9H
XPT(k)-| 2 et (a2) C(t,t,R,R)=2 a(t)8(r;(t) —R)&(r(t') ~R"),
=0 |
B t ! -~ nr ’ N\ — ! ! !
ug(r,t)=fe'k'ff dt’e "o tIPT (k) go(k,t). D(t,t,R,R )=§i) a;(t") ori(t) —R)s(ri(t") —R’).
k —
(A3) (B1)
When the Markov approximation is applicable, Note the symmetry
, A(t,t',R,R")=A(t",t,R",R),
2 '
e Vot — s(t—t"), (A4)
Vok

B(t,t',R,R")=B(t',t,R",R),

the equation of motion becomes

C(t,t’,R,R")=D(t',1,R",R), (B2)

0= A LGS T ) ) ST @R, Thn i, R o
+gj ki) _—_ pT(k)- &k, t). (AS5) % 2 2f dt dt'd1d2 d3 d4[A(t,t',1,3B(t,t',2,4
Equation (A5) is a Langevin equation with noise +ALE,2,3B(LE, 1,9+ ALt 1AHB(t,t',2,3

dz(rl(t) 1t)E 00I(t) + gOUE(ri(t) ,t) SatiSfying +A_(t,t’ ,2,4)B_(t,t, ,1’3) +C_(t,tl ,1,3)D_(t,tl ,2’4)

(6F(ri(0), D F(r; (1), 1)) =24o8(t—1") 81 +C(t,t',2,3D(t,t',1,4 +C(t,t',1,4D(t,t',2,3)
+205T(ri (1), r;(t)a(t—t"). +C(t,t',2.4D(t,t',1,3]
(AB) X U(1-2)U(3—4)+0O(N). (B3)

The Fokker-Planck equation corresponding to this Langevin Let column matrixy(t,t’,1,2,3,4) and 1816 matrixS;
equation is be
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Alt,t',1,3
At,t',2,3
VAt 1234=| Attr 1.4

(t,t",2,4

B(t,t',2,4)
B(t,t',1,4)
B(t,t',2,3

B(t,t',1,3

Pa(t,t’,1,2,3,4=

pe(t,t’,1,2,3,4=

D(t,t',2,4)

D(t,t",1,4

<
(<>
:
-

D(t,t',1,3

wa(t,t',1,2,3,4
¥a(t,t',1,2,3,4
Pp(t,1,1.239=| 4 (1,t',1,2,3,4

Yp(t,t',1,2,3,94

opr oo

0
0
SS5=l o0 0 o0
1

where 1, is a 4X4 unit matrix. Then

i1#]

1
2 _ ’ ’
> oij_zf dt dt'd1 d2 d3 d4 47(t,t',1,2,3,

(B4)

(B5)

(B6)

XSp(t,t',1,2,3,4U(1—-2)U(3—4)+O(N).

2. 34;0; term

The calculation fo;.;O;; can be performed in a similar
way. However, because of the symmetry®andD, there is
an ambiguity in expressing; .;O;; as a sum of products of
C andB, or of C andB, or a mixed type. This should not

(B7)

1 ' T ’
> OU:ZJ dt dt'd1d2 d3 d4 ¢7(t,t',1,2,3,4

1#]

X S,(t,t',1,2,3,4U(1—2) 8(t—t') + O(N),

(B8)
00 00
0 0 1, 0
$={0 1, 0 O} (B9)
00 00

where the overbarred delta functiéhis used to denote that
the integral over time variables, hence #héunction, has to

be done after the integral over space variables has been per-
formed.

3. Gaussian transform and mean-field approximation

Combining the results from the previous two sections,
(e"R)g in Eq. (3.8) can be written as

BZ
epodt dt’d1 d2d3 d4{8—§2 TS, pU(1-2)
0

U(3— 4)—¢TSZwU(1 2)5(t—t')

+0(N))

(B10)

Introducing the variablesQ,(1,2,3,4) - - Q4¢(1,2,3,4) and
performing a Gaussian transform, the generating functional
Zy,¢, becomes

Zugty | (PRHDNDQ)

1
X ex;{ — ZQTAQJF QT+ Lo+ O(N) |,

(B11)

where

16

{DQi}Eiljl DQ; . (B12)

make the final result different, as we expect the same symg is the column matrix formed b®;- - - Q¢ and A is the

metry can be used to convert frodandD or vice versa.

If we expressZ;.;O;; in terms of products o€ andB,

then

coefficient of the quadratic term in E¢B10).

Using the steepest-decent method, the mean-field approxi-
mation gives
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B2 —
Qg(t,t’,1,2,3,4=Ezuu—2)U(3—4)<B(t,t’,2,4)>,
0

BZ
QY(t,t',1,2,3,4=—U(1-2)U(3—4)

473

X(B(t,t',1,4),Q%(t,t",1,2,3,4

BZ

= 4—§SU(1—2)U(3—4)<B(t,t’,2,3)>,

2 _
Qg(t,t’,1,2,3,4=4B—§2U(1—2)U(3—4)<B(t,t’,1,3)>,
0

2 _
QYt,t',1,2,34= 4B—§2U(1—2)U(3—4)<A(t,t’,1,3)>
0

+ ﬂuu—z)?(t—t')(c_(t,t',1,3)>,
2{o
2

B _
QYt,t',1,2,34= 4—§2U(l—2)U(3—4)(A(t,t’,2,3)>
0

+ EU(1—2)?(t—t’)<c_(t,t’,2,3)>,
2{
B2 —
Qg(t,t’,1,2,3,4=EzU(l—2)U(3—4)<A(t,t’,1,4)>
0

+ 20 (1-2)a(t—t)(C(LL,1.4),
2{o

2 —_—
Qg(t,t’,l,2,3,4= 4B—£2U(1—2)U(3—4)<A(t,t’,2,4)>
0
Bo

J’_
2%

U(1-2)8(t—t')}(C(t,t',2.4),

2 .
Q4(t,t',1,2,34= 4B—§(%U(1—2)U(3—4)<D(t,t',2,4))

F 20 (12t -t )(BlLL 2.4),
2¢o

2 _
Qy(t,t",1,2,3,4= 4B—§2U(1—2)U(3—4)<D(t,t’,1,4))
0

B - -
+ 2 U(1-2)8(t—t')(B(t,t',1,9),
2{

2

B _
QY(t,t',1,2,3,4= 4—§2U(1—2)U(3—4)<D(t,t’,2,3))
0

Bo

2§0U(1—2)5(t—t W(B(t,t",2,3),

+

B2 —
Q‘{z(t,t',l,z,s,z;:Fu<1—2)u<3—4)<D(t,t',1,3)>
0

+EU(l—z)Et—t'xB_(t,t',1,3)),
2%

2 —_—
Q(t,t",1,2,3,4= 4?VOU(l—2)U(3—4)(C('[,t’,1,3)),

2 _
Qot,t",1,2,34= 48—52U(l—2)U(3—4)(C(t,t’,2,3)),
0

2 —_—
Qgs(t,t',1,2,3,4=4B—g2U(l—2)U(3—4)(C(t,t’,1,4)),
0
B2 —
Q(l’e(t,t’,l,Z,S,é):EU(l—2)U(3—4)(C(t,t’,2,4)),
0

where the angular brackets mean

f {Dr DR} - -)etoel™

() (B13)

| 1oripijerces’s

The mean-field solution forQ? is determined self-
consistently from these equations. Therefore, the effective
LagrangianL,=Lo+(Q% Ty is

BZ
Le=Lo+ ?f dt dt'd1d2d3d4 U(1-2)U(3—4)
0

X[(A(t,t",1,3)B(t,t", 2,4+ (B(t,t' 2,4)A(t,t',1,9
+2(C(t,t',1,3)D(1,t',2,4]

2B,
+ g—f dt dt'd1d2d3d4 s(t—t')U(1—2)
0

X[(C(t,t",1,3)B(t,t',2,4)
+(B(t,t',2,9)C(t,t",1,3)]. (B14)

APPENDIX C: FIRST-ORDER CORRECTION
OF RELAXATION SPECTRUM

The equation of motion in Sec. IV B has the form
Go '(p,w)&(p,w)=p(p,w)+F[£p,w].  (CD

Substituting the zeroth-order solution

Gy l(p,w)EV(p,w)=pu(p, ) (C2

into the equation of motion, the first-order solution is

§(1)(p,a))=Go(p,w)ﬂ(p,w)+GO(p,w)F[§(o),p,w].
(C3

This solution contains terms to the lowest nontrivial order.
Since & enters inF through exponential function, further it-
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eration does not change the result of the lowest nontrivial 2 p'mT
order. Therefore, to the lowest nontrivial order, the solution E£9(p,w)exp i Nk-E J f(p’,w’)cosT
p' Jo

is

£(p,)=Go( P, @) i(p,w) + Golp,)F[£7p,0]. ><<ei“”—ei“"“>1>
(C4
. . _ 2 2
To find the relaxation spectrum, we find the avera&geer :Go(p,w)Go(p,—w)—\/:lk(e"”t—e""t )
) of the tensor product o VN
’ A ' ' ’ ' XCOSp—e k’B N(Ttt) (ClO)
&(p,w)&(p',0")=GCy(p,w)Go(p",0") u(p,w) u(p', ") N
T Go(P,@)Go(p", ") (P, ) As noted in Sec. IV A, we confine ourselves to the sta-
XFO(p’ ')+ m(p’,0')FO(p,w)],  tionary case. Therefore,

(CH G(t,t",K)=G(t—t’ k), (C11)
whereFO(p,»)=F[£9,p,»] and the term containing two C(t,t’,k)=C(t—t’ k), (C12
FO(p,w) has been dropped becaus®)(p, ) is already in
lowest nontrivial order. where we have assume@(t,t’,1,2)=G(t,t',1-2) and

Let C(t,t',1,2)=C(t,t’,1—-2), i.e., translational invariance,
’ — ’ —ik-R
By(7, 7 )= 2 (C6) G(t,t ,k)—f dR G(t,t',R)e , (C13
NZo“p
prr C(t,t’,k)zf dR C(t,t',R)e kR, (C14
cog——
MEARY )—32 — N gt (e Definin
BN b LoAp ¢
We find G(r,0,k)= f dt €9'G(t,k)e BN (C15
[BR(7.t,t')=BR(7,t—t') is assumefand
<§<o)(pwex;{ \[kz j

E(T,w,k)zf dt d“tC(t,k)e KBNY,  (C16)
><e“‘°"§(p',w'>Qpr(r,r'>l>

then d is the dimensionality

(&(p,w)é&(p' "))
278w+ w')Go(p,w)Go(p,— w)

2\/E i ot ’
_GO(piw)GO(pl_w)g_O lee Qp(T!T)

Xe_kZBN(’T,T’), (C8) _ 2 5 142 sz dr d ,f 1-1/d pmT
AL 290y ) drdT | 7okZ SO TN
. 2 PN/ ’ '
<§<°><|o,w)§<°><|o',w’>exn[I \[NKPE e ><c05<p ,7\'” )eKZBNWl
O)(n" I ’ p T
X E0(p",0")Qui(7,7") +—— dr | kk co
2{o N
2 p 'n"r' ~
=CGol(p©0)Co(p, ~ @) 7| 278+ @) Fp pr xco§ —y | C(mw.k)
2 22 ,
—Go(p w )Go(p ,— W )é’_ﬁkke (ot ')t +N§_G0(p1w)R(prp ,(D)
+ 2 2 Go(p’ JR(p’ ) (C1y
XQp(7,7")Qp(7,7") e KBn(nT) (C9 N & o P’ —@)R(P,P. — @),
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R(p,p’,w)

_Bofdd’sz pmT )
=§—O TdT kECO T Qpr(T,T)

, ") 2 1-1/d
XeszN(T’T)l—gS(—pNW> de dr'f

k 70k®
pmT p w7’ CKBy(rr)
X - - N(T)
C05< N )CO{ N )e

B2 o~
Xlz—é%J' dekl[G(T,O,k)

p'wr
N

~ pmT
—G(r,w,k)]~kkkcos< COS(T). (C18
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B2 2 pmT pmr’

(3) — —
oA (w) 2?ONJdTchos( N )cos( N )
2

xi[é(r,o,k)—é(r,w,k)]-k%. (C21)

The scalar contraction of the tensor product giwes take
the p=p’ mode only because of orthogonality of mores

(&(p,0)-&(p,@"))=Go(p,®)Go(P, ~ @)
X{(u(p,w)-pu(p,0"))o{1~Go(p, )
X[SALY+ AP+ SA Y ()]
—Go(p,— w)[ SAL+ SA P

+ AP (- w)1}, (C22

Note that these equations are obtained after higher-order

terms are dropped. Therefore, it does not mean §piw)
is a Gaussian process.

Define
By 2 k?
H__202% 2
5Ap Zo N drdr fkd
pﬂ_T ’ —kZBN(T,T/)
X €O N Qp(7,7")e , (C19

2 2
g5 2(pm 1-1/d
(2)— _ R '
5Ap N( N ) de dT k_kz_

7o
pmr'
Cco N

ol

—Kk?By(7,7)
N e , (C20

where (u(p,w) - u(p,w'))o is the value obtained from Eg.
(4.13 by using the zeroth-order solution EE2).
Therefore

[Go (p,w)+ A (@) ][Gg H(p,— @)+ SA H(— w)]
X<§(p!w)'g(pvw,)>:<ﬂ(p1w) '”’(pvw,)>0:
SAp(@)=SA+ AP+ A (w).

(C23
(C29
The relaxation spectrum is therefore renormalized

Ap— Ayt A p(w). (C2H

We note that the first two correctior\ (¥ and SA(Y, due
to the excluded-volume effect and the hydrodynamic effect,
respectively, are the same as those found in Réf|.
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